CARBON ALLOTROPES & GIANT COVALENT STRUCTURES 1

MARK SCHEME

Q1.

Question	Answer	Extra information	Marks
		reference to incorrect bonding or incorrect particles or incorrect structure = max 3	
	high melting point	accept will not melt (at high temperatures) ignore withstand high temperatures	1
	because a lot of energy needed to break bonds		1
	because it is covalent or has strong bonds	accept bonds are hard to break	1
	and because it is a giant structure or a macromolecule or a lattice	ignore many bonds	1
Total marks			4

Q2.

Question	Answer	Extra information	Marks
(a)	Graphite:	it = graphite	
	because the layers (of carbon atoms) in graphite can move / slide		1
	this is because there are only weak intermolecular forces or weak forces between layers	accept Van der Waals' forces allow no covalent bonds between layers	1
	Diamond:		
		allow diamond has three	
	however, in diamond, each	dimensional / tetrahedral	1
	carbon atom is (strongly /	structure	

	covalently) bonded to 4 others		
	so no carbon / atoms able to move / slide	allow so no layers to slide or so diamond is rigid	1
(b)	because graphite has	allow free / mobile / roaming	1
	delocalized electrons / sea of	electrons	
	electrons		
	which can carry charge /		1
	current or move through the		
	structure		
	however, diamond has no	accept however, diamond has all	1
	delocalised electrons	(outer) electrons used in bonding	
Total marks			7

Q3.

Question	Answer	Extra information	Marks
		max 3 marks if incorrect bonding	
	giant structure or lattice or macromolecule		1
	strong bonds (between carbon / atoms)		1
	covalent (bonds)		1
	each carbon / atom forms 4 bonds	accept tetrahedral if no other marks awarded, allow carbon (atoms) for 1 mark	1
Total marks			4

Q4.

Question	Answer	Extra information	Marks
	any two from:		2
	 bonds are strong 	accept hard to break	
	 a lot of energy needed to 	allow heat for energy	
	break bonds		
	 all atoms are joined by 	accept forms lattice	
	(covalent) bonds		
	 a large number of bonds 		
	would need to be broken		

Q5.

Question	Answer	Extra information	Marks
(a)(i)	covalent	two different answers indicated gains 0 marks	1
(ii)	carbon	two different answers indicated gains 0 marks	1
(iii)	3	two different answers indicated gains 0 marks	1
(b)	layers can slide / slip		1
	because there are no bonds between layers	accept because weak forces / bonds between layers	1
	<pre>or so (pieces of) graphite rubs / breaks off</pre>		
	or graphite left on the paper		
Total marks			5

Q6.

Question	Answer	Extra information	Marks
(a)	reduce wear of metal i.e. don't get damaged	or other sensible answer	1
	or		
	stop / reduce friction	accept stop metal heating up	
		accept move more smoothly	
		ignore make it slippery / rub	
		more	
		smoothly	

	or	accept can move freely	
	prevent seizing		
(b)(i)	carbon		1
(ii)	layers (of atoms)		1
	can slide / slip over each other	allow slip off	1
	or		
	weak forces of attraction /	allow no bonds	
	weak bonds (between layers)		
		accept there are weak forces of	
		attraction for 1 mark even when	
		there is no reference to layers	
		accept atoms slide over each	
		other (for 1 mark)	
		an answer which only states	
		there are weak bonds would gain	
		0 marks	
		when there is no reference to	
		layers weak covalent bonds = 0	
		marks	
Total marks			4

Q7.

Question	Answer	Extra information	Marks
	high melting point		1
	not flammable		1
Total marks			2

Q8.

Question	Answer	Extra information	Marks
	high		1
	giant	allow covalent	1
	four		1
	covalent		1
Total marks			4

Q9.

Question	Answer	Extra information	Marks
	any two from:conducts electricitysoftslipperyhigh melting point	ignore hardwearing / does not stick apply list principle	2
Total marks			2