Conduction and Convection 2 MS

QUESTION 1

QUESTION	ANSWER	EXTRA INFORMATION	MARKS
a)i)	Conduction	correct order only	1
	convection		1
a)ii)	to keep the ceramic bricks hot for a longer time		1
b)i)	18.2	E = P t allow 1 mark for correct substitution ie 2.6 7 provided that no subsequent step is shown	2
c)	2 250 000	E = m c θ allow 1 mark for correct substitution ie 120 750 25 provided that no subsequent step is shown answers 2250 kJ or 2.25 MJ gain both marks	2
Total marks			6

QUESTION	ANSWER	EXTRA INFORMATION	MARKS
a)i)	conduction		1
a)ii)	atoms gain (kinetic) energy	accept particles / molecules for	1
	or	atoms	
	atoms vibrate with a bigger	do not accept electrons for	
	amplitude	atoms	
	or	accept vibrate faster / more	
	atoms collide with neighbouring	do not accept start to vibrate	
	atoms		
	transferring energy to		1
	(neighbouring / other) atoms		
	or	do not accept heat for energy	
	making these other atoms vibrate		

	with a bigger amplitude	accept faster / more for bigger amplitude mention of (free) electrons moving and passing on energy negates this mark	
b)i)	5 (oC) to 25 (oC)	either order	1
b)ii)	a correct example of doubling temperature difference doubling heat transfer eg going from 5 to 10 (oC) difference doubles heat transfer from 30 to 60 (J/s)	accept for heat transfer number of joules / it allow 1 mark for correctly reading 1 set of data eg at 5 oC the heat transfer is 30 or for every 5oC increase in temperature difference heat transfer increases by 30 (J/s) no credit for stating they are directly proportional	2
b)iii)	1800	allow 1 mark for obtaining heat transfer value = 120	2
Total marks			8

QUESTION	ANSWER	EXTRA INFORMATION	MARKS
a)	to reflect (the infrared)	accept (shiny surfaces) are good reflectors ignore reference to incorrect type of wave	1
b)	Black best absorber (of infrared)	answer should be comparative black absorbs (infrared) is insufficient accept good absorber (of infrared) ignore reference to emitter ignore attracts heat ignore reference to conduction	1

с)	to reduce energy loss or so temperature of water increases faster or reduces loss of water (by evaporation)	accept to stop energy loss accept heat for energy accept to stop / reduce convection accept to heat water faster accept cooks food faster	1
d)	672000	allow 1 mark for correct substitution, ie 2 × 4200 × 80 provided no subsequent step shown	2
Total marks			6

QUESTION	ANSWER	EXTRA INFORMATION	MARKS
a)	ANSWER (matt) black is a good emitter of infrared / radiation to give maximum (rate of) energy transfer (to surroundings)	extra information accept heat for infrared / radiation ignore reference to good absorber attracts heat negates this marking point accept temperature (of coolant) falls fast(er) accept black emits more radiation for 1 mark black emits most radiation / black is the best emitter of radiation for 2 marks	MARKS 1 1
b)	the fins increase the surface area so increasing the (rate of) energy transfer or so more fins greater (rate of) energy transfer	accept heat for energy	1 1
c)	114000	allow 1 mark for correct temperature change, ie 15 (°C)	3

		or allow 2 marks for correct substitution, ie 2 × 3800 × 15 answers of 851 200 or 737 200 gain 2 marks or substitution 2 × 3800 × 112 or 2 × 3800 × 97 gains 1 mark an answer of 114 kJ gains 3 marks	
d)	increases the efficiency less (input) energy is wasted or more (input) energy is usefully used	accept some of the energy that would have been wasted is (usefully) used accept heat for energy	1 1
Total marks			9

QUESTION	ANSWER	EXTRA INFORMATION	MARKS
a)	conduction		1
b)i)	any one from: •starting temperature (of cold	temperature is insufficient	1
	water) •pipe length •pipe diameter	accept size of pipe	
	 pipe diameter pipe (wall) thickness volume of cold water temperature of hot water (in) time 	accept amount for volume	
b)ii)	copper greatest temperature change	only scores if copper chosen accept heat for temperature accept heated water the fastest accept it was hottest (after 10 minutes) accept it is the best / a good conductor	1 1
c)	the pipe has a larger (surface) area (so) hot / dirty water (inside pipe) is in contact with cold / clean water (outside pipe) for longer	accept pipe is longer	1

Total manufes		\boldsymbol{c}
Total marks		n
i otal illalika		0