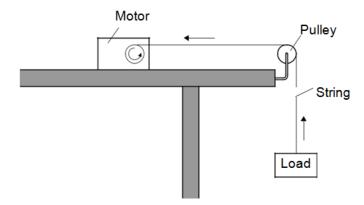
Effeciency and Reducing Unwanted Energy transfers 3

Q:1 A wood burning stove is used to heat a room.


The fire in the stove uses wood as a fuel. The fire heats the matt black metal case of the stove.

(a)	The air next to the stove is warmed by infrared radiation.					
Ho	w does the design of the stove help to improve the rate of energy transfer by infrared radiatio	n?				
_						
•						

(2 marks)

(b)	Burning 1 kg of wood transfers 15 MJ of energy to the stove. The stove then tra	nsfers
13.5 MJ	of energy to the room.	
Calculat	e the efficiency of the stove.	
Use the	correct equation from the Physics Equations Sheet.	
Show cle	early how you work out your answer.	
Efficienc	y =	<i>(</i>
		(2 marks)
(c) the air o	Some of the energy from the burning wood is wasted as the hot gases leave the utside the house.	e chimney and warm
Name o	ne other way energy is wasted by the stove.	
		(1 mark)
(d) burning	Some people heat their homes using electric heaters. Other people heat their hastove.	
	o environmental advantages of using a wood burning stove to heat a home rather t tricity generated from fossil fuels.	han heaters that
1		_
		_
2		_
		_
		(2 marks)

Q:2 A student uses an electric motor to lift a load.

In the motor, the electrical energy is transferred into other types of energy. Some of this energy is useful and the rest of the energy is wasted.

(a) (i) Name the useful energy output from the electric motor.

(1 mark)

(a) (ii) What eventually happens to the wasted energy?

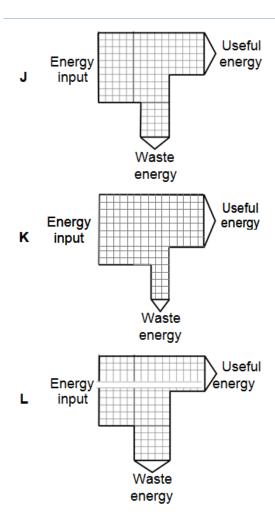
(1 mark)

(b) The graph shows the input energy the motor needs to lift different loads by one metre.

What can you conclude from the graph about the relationship between the load lifted and the input energy needed?

(2 marks)

Q:3 (a) The diagram shows the energy transformations produced by a television.



energy transferred by the television is 720 joules every second. (a) (i) Use the equation in the box to calculate the efficiency of the television. useful energy transferred by the device Efficiency = total energy supplied to the device Show clearly how you work out your answer. Efficiency = _____ (2 marks) (a) (ii) Use one word from the diagram to complete the following sentence. The electrical energy that is not usefully transformed by the television is wasted as (1 mark)

When the television is working, 1200 joules of energy are supplied to the television every second. The useful

(b) Drawn below are the Sankey diagrams for three televisions, J, K and L.

The diagrams are drawn to the same scale.

Which one of the televisions, J, K or L, is the most efficient?

Write your answer in the box.

Give a reason for your answer.

(2 marks)

Q:4 A	homeowner had a new gas boiler	· installed.							
(a) The following information is an extract from the information booklet supplied									
	Fuel	Natural Gas							
	Water temperature	60 °C							
	Energy supplied to gas boiler	8.0 kJ/s (8.0 kW)							
	Efficiency	0.95							
(a) (i) Use the equation in the box to calculate the energy transferred each second by the ga									
the water inside the boiler.									
useful energy transferred by the device									
Efficiency= total energy supplied to the device									
Show clearly how you work out your answer.									
Energy transferred by the gas boiler each second = kJ									
(b) A	Ithough the gas boiler is very effic	ient, some energy							
Explain what	happens to the waste energy.								

(2 marks)

Q:5	Figure 1 snows a car with an electric motor. The car is moving along a flat road.					
	Figure 1					
(a) (i)	Use the c	correct answers f	rom the box to comple	te each sentence.		
	light	electrical	kinetic potential	sound		
The car's n	energy as the car					
					[3 marks]	
(a) (ii) 	What hap	opens to the was	eted energy?			
					[1 mark]	
(b)	The elect	ric motor has an	input energy of 50 000) joules each second.		
The motor	transfers	35 000 joules of	useful energy each sec	ond.		
Calculate t	he efficien	cy of the electric	c motor.			
Use the co						
Efficiency					(2 marks)	
Linciency -	(2 marks)					