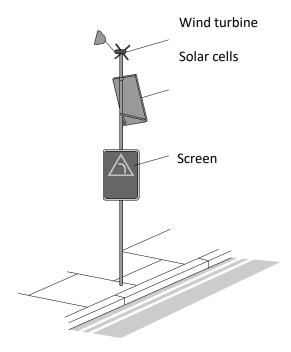

Effeciency and Reducing Unwanted Energy 4

Q:1 This question is about an electric kettle which is used to boil some water.



Match numbers, A, B, C and D, with the spaces 1–4.

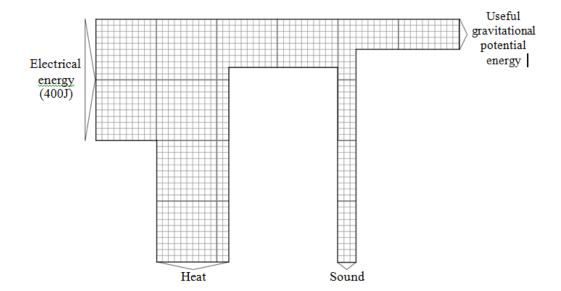
- **A** 0.9
- **B** 10
- **C** 30
- **D** 360

Q:2 The diagram shows an electronic road sign.

Match types of energy, A, B, C and D, with the numbers 1–4 in the sentences.

- A electrical energy
- B thermal energy
- C light energy
- D kinetic energy

The useful energy output from the screen is $\dots 1 \dots$


The energy input to the wind turbine is . . . 2

The useful energy output from the solar cells is . . . 3

The wasted energy output from the road sign is . . . 4

Q:3 An electric motor is used to lift a weight.

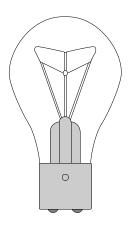
The Sankey diagram shows the energy transformations that take place each second in the electric motor.

Match figures, A, B, C and D, with the numbers 1–4 in the sentences.

- A 0.25
- B 60
- C 100
- D 240

efficiency = useful energy transferred by the device

Useful gravitational potential energy


The useful gravitational potential energy gained each second is $\dots 1 \dots J$.

The heat (thermal energy) produced each second is $\dots 2 \dots J$.

The sound energy produced each second is . . . 3 . . . J.

The total energy wasted each second is 300 J. The efficiency of the electric motor is ... 4

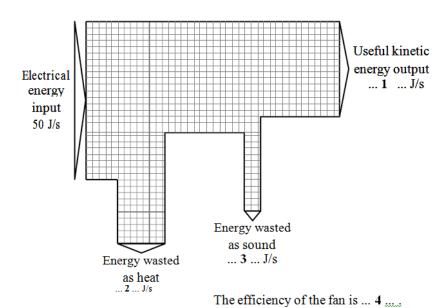
Q:4 The diagram shows a lamp.

The lamp has a power of 100 watts (W).

It gives out light at a rate of 5 watts.


 $\label{eq:useful-energy} \mbox{ useful energy transferred by the device efficiency =} \\ \mbox{ total energy supplied to the device}$

Match values, A, B, C and D, with the numbers 1–4 in the table.

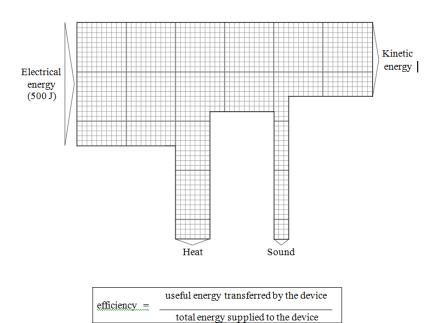

- A 0.05
- B 5
- C 95
- D 100

1	amount of energy supplied to the lamp each second in joules
2	amount of energy transferred as light each second in joules
3	amount of energy wasted each second in joules
4	efficiency of the lamp

Q:5 The diagram shows an electric fan.

The Sankey diagram gives the energy transformations for the fan.

efficiency = useful energy transferred by the device total energy supplied to the device


Match numbers, A, B, C and D, with the labels 1–4 on the Sankey diagram.

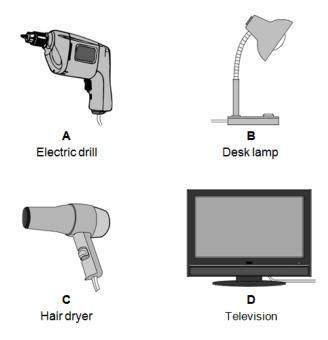
- A 0.6
- B 5
- C 15
- D 30

Q:6 The diagram shows a smoothie maker.

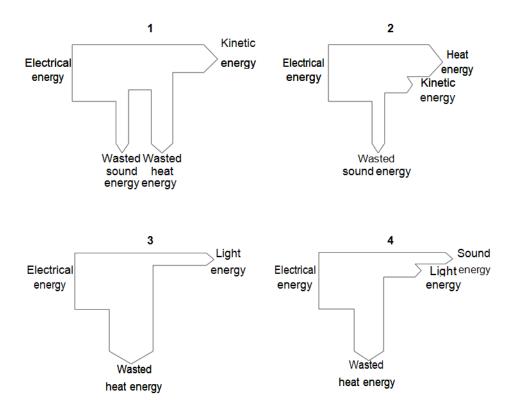
The Sankey diagram shows the energy transfers that take place each second in this smoothie maker.

Match figures, A, B, C and D, with the numbers 1–4 in the sentences.

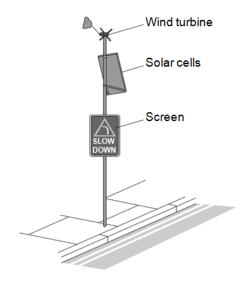
- A 0.6
- B 140
- C 200
- D 300


The kinetic energy produced each second is $\dots 1 \dots J$.

The heat produced each second is . . . 2 . . . J.


The total energy wasted each second is $\dots 3 \dots J$.

The efficiency of the smoothie maker is . . . 4


Q:7 The diagrams show four electrical devices. The Sankey diagrams show the energy transformations involved in the four electrical devices.

Match devices, A, B, C and D, with the Sankey diagrams 1–4.

Q:8 The diagram shows an electronic road sign.

Match types of energy, A, B, C and D, with the numbers 1–4 in the sentences.

- A electrical
- B thermal
- C light
- D kinetic

The useful energy output from the screen is . . . 1 . . . energy.

The energy input to the wind turbine is . . . 2 . . . energy.

The useful energy output from the solar cells is $\dots 3 \dots$ energy.

The wasted energy output from the road sign is . . . 4 . . . energy.

TOTAL MARKS=32