HYDROCARBONS 6

Q1. Large hydrocarbon molecules can be broken down to produce smaller molecules.

An example is shown below.

$$C_{10}H_{22} \longrightarrow C_{2}H_{4} + C_{5}H_{12} + C_{3}H_{6}$$
A B C D

Match hydrocarbons, A, B, C and D, with the numbers 1–4 in the table.

1	It has molecules with 17 atoms.		
2	It is ethene.		
3	It can be represented by $\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
4	It is the alkane with the largest molecules.		

(4 marks)

Q2. The diagram shows what happens to an unsaturated vegetable oil when it is treated in different ways.

Match processes, A, B, C and D, with the numbers 1–4 in the diagram.

- A Burn in oxygen
- B Test for unsaturation

- C Add water and shake vigorously
- D React with hydrogen

(4 marks)

Q3. This equation shows the thermal decomposition of a hydrocarbon.

- (a) What is the name of this process?
- 1 polymerisation
- 2 cracking
- 3 combustion
- 4 hydrogenation

(1 mark)

- **(b)** In this decomposition, . . .
- the hydrocarbon vapour is heated with iodine.
- the hydrocarbon is mixed with hydrogen and heated.
- 3 the hydrocarbon vapour is passed over a hot catalyst.
- 4 the hydrocarbon is liquefied, then passed over a catalyst.

(1 mark)

- (c) The alkene produced . . .
- is an unsaturated compound.
- 2 has molecules in which each carbon atom has two bonds.
- 3 is unreactive.
- 4 will burn to produce carbon dioxide and hydrogen.

Q4. This question is about the formulae of four carbon compounds, A, B, C and D.

Match formulae, A, B, C and D, with the numbers 1–4 in the table.

1	It is an unsaturated hydrocarbon.
2	It is the alkane that was present in Earth's early atmosphere.
3	It is made by reacting ethene with steam.
4	It is the monomer from which the polymer, poly(chloroethene) is made.

(4 marks)

Q5. This question is about four vegetable oils, A, B, C and D.

	Vegetable oil	Mass of the oil that can be extracted from 100 kg of seeds of the plant	Saturated fat %	Unsaturated fat %	
				mono	poly
Α	Corn	6 kg	13	25	62
В	Olive	40 kg	11	69	20
С	Rapeseed	35 kg	12	24	64
D	Sunflower	32 kg	14	19	67

Match vegetable oils, A, B, C and D, with the numbers 1–4 in the table below.

1	It contains the most saturated fat.
2	It contains 88 % unsaturated fat.
3	It contains the largest percentage of unsaturated fat.
4	Its seeds produce the least oil.

(4 marks)

- **Q6.** Match words A, B, C and D, with the numbers 1–4 in the sentences.
- A alkenes
- B polymers
- C monomers
- D alkanes

Hydrocarbons are cracked to produce both saturated and unsaturated hydrocarbons.

The saturated hydrocarbons that are used as fuels are called . . . 1

The unsaturated hydrocarbons are called . . . 2

Compounds, such as poly(ethene) and poly(propene), that have very long chain molecules are called $\dots 3 \dots$

Long chain molecules are made when many small molecules join together. These small molecules are called . . . 4

(4 marks)

Q7. This question is about unsaturated oils.

A student tested four oils, K, L, M and N, to find out which was the most unsaturated.

The student:

- used the same volume of each of the oils for all the tests.
- added bromine water from a burette to oil K and shook the mixture.
- continued until the bromine water was no longer decolourised.
- recorded the volume of bromine water added.
- repeated this two more times for oil K.

He then repeated the same procedure for oils L, M and N.

His results are given in the table.

Oil tested	Volume of bromine water added in cm ³			
Oil tested	Test 1	Test 2	Test 3	
K	20.1	20.2	20.2	
L	42.2	44.2	46.2	
М	25.6	26.3	27.0	
N	15.8	16.5	14.3	

- (a) The student used the burette to measure the volume of bromine water to the nearest . . .
- 1 0.1 cm^3
- $2 0.2 \text{ cm}^3$
- 3 1.0 cm³
- 4 2.0 cm³

(1 mark)

- (b) The student obtained the largest range of burette readings for oil . . .
- 1 K
- 2 L
- 3 M
- 4 N

(1 mark)

- (c) The student obtained the most precise results for oil . . .
- 1 K
- 2 L
- 3 M
- 4 N

- (d) A valid conclusion from his experiment is that . . .
- 1 four oils were tested.
- 2 oil N was the most unsaturated.
- 3 all four of the oils were unsaturated.
- 4 all oils react with bromine.

(1 mark)

Q8. Match compounds, A, B, C and D, with the numbers 1–4 in the table.

	Description
1	It is not a hydrocarbon but burns to give carbon dioxide and water.
2	It is a saturated hydrocarbon used as a fuel.
3	It will not produce water vapour if it burns.
4	It belongs to a group of compounds with the general formula C_nH_{2n-2}

(4 marks)

- **Q9.** The question is about vegetable oils.
- (a) Many vegetable oils contain unsaturated compounds.

This means that . . .

- 1 they are soluble in water.
- they can form an emulsion with water.
- 3 they contain double carbon carbon bonds.
- 4 they do not contain single carbon carbon bonds.

The chart shows some information about four vegetable oils.

The iodine number of a vegetable oil is the number of grams of iodine that will react with 100 g of the oil. The higher the iodine number, the more unsaturated the compounds are in the vegetable oil.

- **(b)** The bar chart indicates that the lower the melting point of a vegetable oil, . . .
- 1 the less iodine it will react with.
- 2 the more unsaturated compounds are in the oil.
- 3 the lower the iodine number.
- 4 the more saturated compounds are in the oil.

(1 mark)

- (c) How much iodine will 1 g of coconut oil react with?
- 1 0.01 g
- 2 0.1 g
- 3 1.0 g
- 4 10.0 g

(d) Which row in the table describes what happens when a vegetable oil reacts with hydrogen and correctly describes how the product is different from the vegetable oil?

	Reaction of vegetable oil with hydrogen	Product
1	increase in compounds with C == C	harder
2	increase in compounds with C == C	softer
3	decrease in compounds with C == C	harder
4	decrease in compounds with C == C	softer

(1 mark)

- **Q10.** This question is about the cracking of hydrocarbons.
- (a) Which of the following is a correctly balanced equation for the cracking of C15H32 in which two different alkenes are produced?
- $1 \qquad C_{15}H_{32} \rightarrow 2C_2H_4 + C_3H_6 + C_8H_{18}$
- 2 $C_{15}H_{32} \rightarrow 2CH_4 + C_3H_6 + C_4H_{10} + C_6H_{12}$
- 3 $C_{15}H_{32} \rightarrow 2C_3H_6 + C_9H_{20}$
- 4 $C_{15}H_{32} \rightarrow C_4H_{10} + C_5H_{10} + C_6H_{14}$

(1 mark)

(b) Which of the following hydrocarbons that could be produced by the cracking of C_9H_{20} has the general formula CnH2n and decolourises bromine water?

1
$$CH_3 - CH_2 - \frac{H}{C} - \frac{H}{C} - \frac{H}{C} - \frac{H}{C} - \frac{CH_2}{CH_2} - \frac{CH_2}{CH_3}$$

2 $\frac{CH_2}{CH_2} - \frac{CH_2}{CH_2}$
 $\frac{CH_2}{CH_2} - \frac{CH_2}{CH_2}$

Q11. This question is about four substances.

Match substances, A, B, C and D, with the descriptions 1–4 in the table.

- A bromine
- B ethene
- C poly(propene)
- D water

	Description
1	It forms an emulsion if shaken with an oil
2	It is a polymer
3	It is an unsaturated hydrocarbon
4	It reacts with unsaturated oils to form a colourless compound

(4 marks)

Q12. Viscosity is a measure of how easily a liquid flows.

The more viscous an oil is, the more slowly it will flow.

A student compared the viscosities of four different oils, W, X, Y and Z, at different temperatures. He used the apparatus shown in the diagram.

First, he used oil W.

- Oil W was heated to 20 °C and was then poured into the funnel.
- The time taken for oil W to flow from P to Q was recorded.
- The student repeated the procedure for oil W at temperatures of 30 $^{\circ}$ C, 40 $^{\circ}$ C and 50 $^{\circ}$ C.

The student then used oils X, Y and Z in the same way.

Matcr	i variables, A, B, C and D, with the numbers 1– 4 in the sentences.	
Α	the colour of the oil	
В	the time the oil takes to flow from P to Q	
С	the distance between P and Q	
D	the four temperatures used for each oil	
An inc	dependent variable is 1	
The de	ependent variable is 2	
A cont	trol variable used to make the investigation fair is 3	
A varia	able that does not affect the result of the investigation is 4	
		(4 marks)
Q13.	The equation for the thermal decomposition of a hydrocarbon is:	
	$C_7H_{16} \rightarrow C_4H_8 + Substance E$	
(a)	What name is given to this process?	
1	combustion	
2	condensation	
3	cracking	
4	hydrogenation	
		(1 mark)
(b)	In this process,	
1	hot gases are mixed with water.	
2	hot vapours are passed over a hot catalyst.	
3	liquids are mixed with water.	
4	liquids are passed over a catalyst.	
		(1 mark)
(c)	Substance E will have the formula	
1	CH ₄	
2	C ₃ H ₆	
3	C ₃ H ₈	
4	C_9H_{20}	

(1 mark)

- (d) The substance with the formula C4H8 is . . .
- 1 an alkane.
- 2 an alkene.
- 3 a saturated hydrocarbon.
- 4 a polymer.

(1 mark)

Total marks (49)