# MOMENT 

Q1 A spanner gives a turning effect to undo a nut.
(a) Complete the sentence.

The turning effect of a force is called the of the force.
(b) The diagram shows a spanner being used.


Use the equation in the box to calculate the spanner's turning effect in newton metres.

| turning effect $=$ force $\times$ perpendicular distance from the line of action |
| :---: |
| of the force to the axis of rotation |

Show clearly how you work out your answer.
$\qquad$
$\qquad$

> Turning effect =

Nm
(2 marks)

Give two ways in which you can increase the spanner's turning effect.
1.
2.
$\qquad$
$\qquad$
(2 marks)
Q2. The diagram shows a back view of a computer monitor.

(a) In normal use, the monitor is stable.
(i) Explain the meaning, in the above sentence, of the word stable.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
(ii) State the relationship between the total clockwise moment and the total anticlockwise moment about any axis of the monitor when it is stable.
$\qquad$
$\qquad$
(b) The instruction booklet explains that the screen can be tilted. It also includes a warning.


Explain why the monitor will tip over if the screen is tilted too far back.
Include the words centre of mass, weight and moment in your explanation.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
(3 marks)

Q3 The diagram shows a fork-lift truck with a load of 2.4 kN . The clockwise moment caused by this load is 2880 Nm


Use the equation in the box to calculate the distance d.

| turning effect $=$ force $\times$ perpendicular distance from the line of action |
| :---: |
| of the force to the axis of rotation |

Show clearly how you work out your answer.

Distance d =
(3 marks)
(b) This warning notice is in the driver's cab.


Explain in terms of moments why the maximum load must not be exceeded.
$\qquad$
$\qquad$
$\qquad$

Q4 (a) The diagram shows the girl and her father on a see-saw.

(i) Use the equation in the box to calculate the moment of the girl.

$$
\begin{array}{r}
\text { turning effect }=\text { force } \times \text { perpendicular distance from the line of action } \\
\text { of the force to the axis of rotation }
\end{array}
$$

Show clearly how you work out your answer.

> Turning effect of the girl =
$\qquad$ Nm
(2 marks)
(b)(ii) What must her father do to increase his moment?

Q5. The drawing shows a sign which hangs outside a shop.

(a) Draw an $X$ on the sign so that the centre of your $X$ is at the centre of mass of the sign.
(1 mark)
(b) One force which acts on the sign is its weight.

Complete the following sentence by drawing a ring around the correct line in the box.

The moment of the weight produces | $\begin{array}{l}\text { an accelerating } \\ \text { a balancing } \\ \text { a turning }\end{array}$ |
| :--- |

(1 mark)

Q 6. Two children visit a playground.
The diagram shows them on a see-saw. The see-saw is balanced.


Complete the following sentences by drawing a ring around the correct word or line in the box.
(a) (i) The turning effect of the girl's weight is called her
force.
load.
moment

(a) (ii) Point P is the axis of | balance |
| :--- |
| rotation |
| turning |$\quad$ of the see-saw.

(1 mark)
(a) (iii) To make end $A$ of the see-saw go up,
the boy moves nearer to point $P$.
the girl moves nearer to point $P$. the girl moves nearer to end $A$.
(b) In another part of the playground, a tyre has been suspended from a bar.
(b) (i) Draw an $X$ on the diagram so that the centre of the $X$ marks the centre of mass of the tyre.

b) (ii) Complete the sentence by using the correct word or phrase from the box.

| above below | to the left of | to the right of |
| :--- | :--- | :--- |

If the suspended tyre is pushed, it will come to rest with its centre of mass directly the point of suspension.
(1 mark)

Total: 26 Marks

