POLYMERS 3

Q1. The table below shows the masses of some gases given off when one gram of each of the polymers, A, B, C and D, are burnt in air.

		Combustion products in mg						
	Polymer name	C ₂ H ₄	CH ₄	CO2	CO*	NO ₂ *	HCN*	NH3*
Α	Kevlar	-	-	1850	50	10	14	0.5
В	Acrylic	5	17	1300	170	45	40	3.0
С	66 Nylon	50	25	1200	250	20	30	-
D	Polyester	6	10	1000	350	_	_	_

Toxic gases are marked with *.

Match polymers, A, B, C and D, with the numbers 1–4 below.

- 1 the polymer that produces the most HCN
- 2 the polymer that produces the most ethene
- 3 the polymer that produces no hydrocarbons
- 4 the polymer that produces the largest total mass of toxic gases

(4 marks)

Q2. Some polymers can be used for tooth fillings. A good polymer should not shrink in the tooth cavity.

A scientist tested a polymer, K, to see how much it shrinks when it sets.

- He made a sample of the polymer in a container with a volume of 10 cm3 exactly.
- He allowed the polymer to set hard.
- He removed the polymer from the container and measured its volume again, using the apparatus shown.
- He repeated the test three times.

The scientist then tested three different polymers, L, M and N, in exactly the same way. The results are shown in the table.

Baluman	Volume of water displaced in cm ³					
rotymer	Test 1	Test 2	Test 3	Test 4		
К	9.6	9.8	9.7	9.8		
L	7.8	8.2	8.9	10.2		
М	9.2	9.5	9.6	10.0		
N	9.2	9.6	8.5	9.7		

- (a) Which statement about the results is correct?
- 1 All four polymers would be equally good as dental fillings.
- 2 Polymer K shows the most consistent results.
- 3 Polymer L is the best for dental fillings because it gives the highest values.

- (b) Which one of the following could be the reason for the reading of 10.2 cm3 for polymer L, Test 4?
- 1 The piece of string was too long.
- 2 The polymer was dropped into the water in the displacement can.
- 3 At the start, the water was below the level of the spout.
- 4 Some water had evaporated.

- (c) One of the tests on polymer M gives a volume of 10.0 cm3. Does this mean it is the best polymer?
- 1 Yes, because it has given the volume needed.
- 2 No, because a single result should not be relied upon.
- 3 Yes, because it would be the highest value that could be obtained.
- 4 No, because the first test is always the most accurate.

(1 mark)

- (d) Any polymer used for dental fillings should not be biodegradable because it would . .
- 1 cost too much to make.
- 2 be poisonous.
- 3 shrink too much.
- 4 break down after it has been put in place.

(1 mark)

Q3. Some properties of two forms of poly(ethene) are shown in the table.

Polymer	Density in kg per m ³	Tensile strength in MPa
Low-density poly(ethene) - LDPE	925	16
High-density poly(ethene) – HDPE	950	28

The molecules of low-density poly(ethene) and high-density poly(ethene) are represented in the diagrams.

- (a) The reason for the differences in strength and density between LDPE and HDPE is that . . .
- 1 they contain different elements in their structure.
- 2 they were made under different conditions.
- 3 they have different colours added.

- 4 different monomers are used to make the chains.
- (b) HDPE has a higher density than LDPE because . . .
- 1 it is stronger.
- 2 more plastic is used to make LDPE.
- 3 the polymer molecules pack closer together in HDPE.
- 4 LDPE has shorter polymer chains.

(1 mark)

(1 mark)

- (c) Which is the most appropriate method for disposal of a non-biodegradable polymer such as poly(ethene)?
- 1 freeze it so that it returns to the original monomer
- 2 dispose of it at sea
- 3 bury it in the ground
- 4 break it down by adding microorganisms

(1 mark)

(d) Which one of the following is the correct balanced equation for the polymerisation of ethene to form poly(ethene)?

Q4. A scientist investigated how much the plastic polyvinyl chloride (PVC) bends when a mass is added. He used the apparatus shown in the diagram.

He measured the bending of PVC samples containing different percentages of an added chemical called a plasticiser. The PVC samples were all the same size.

The results are shown in the table.

Percentage (%)	Bending of PVC sample in mm					
added to PVC	Test 1	Test 2	Test 3	Test 4	Mean	
0	17	18	16	8	17	
5	23	22	24	23	23	
10	29	27	29	27	28	

- (a) As the plasticiser percentage increases, the bending of the PVC samples . . .
- 1 remains the same.
- 2 increases.
- 3 decreases.
- 4 increases and then decreases.

- (b) The scientist did the test four times for each percentage of plasticiser added, ...
- 1 to control all of the variables.
- 2 to decrease the time needed.
- 3 to improve reliability.
- 4 to increase the precision.

- (1 mark)
- (c) The mean bending value for 0 % plasticiser is shown in the table as 17 mm. The reason is that . . .
- 1 17 mm was the first reading taken.
- 2 17 mm was the most common reading.
- 3 when all values are added together and divided by 4, 17 mm is obtained.
- 4 the reading for Test 4 is an anomalous value and is ignored.

(1 mark)

- (d) Plasticiser is not added to the PVC used to make doors because . . .
- 1 too much would be needed.
- 2 it would be too toxic.
- 3 the doors would be biodegradable.
- 4 the doors need to be rigid.

(1 mark)

Q5. The equation shows a chemical reaction.

3 an alkene.

an alkane.

(a)

1

2

4 a catalyst.

- (b) Hydrocarbon Y is . . .
- 1 an unsaturated compound.
- 2 a polymer.
- 3 an alkene.
- 4 a monomer.

(1 mark)

(1 mark)

- (c) Poly(propene) is a thermosoftening polymer so it cannot be used to make . . .
- 1 buckets.
- 2 food containers.
- 3 non-stick coating for frying pans.
- 4 washing-up bowls.

(1 mark)

- (d) Putting poly(propene) and other polymer waste into landfill creates a problem because this type of waste . . .
- 1 is very lightweight and blows about.
- 2 is not biodegradable.
- 3 does not dissolve in water.
- 4 is very dense and sinks deep underground.

(1 mark)

Q6. Worldwide, about 20 billion wine bottle stoppers are produced each year. In recent years, the traditional cork stoppers have been gradually replaced by screw-top stoppers.

Cork is the bark from the cork-oak tree, which is cut off about every ten years. Tens of thousands of people in rural Portugal depend on cork for their livelihoods. Used cork can be recycled.

A screw-top stopper can be made of aluminium, inside which is a polymer sealant. The sealant is usually made of poly(ethene) or poly(vinylidene chloride). Extraction of aluminium from its ores is expensive and a lot of energy is required. It is difficult to separate the polymer from the aluminium cap to allow aluminium to be recycled.

Vinylidene chloride has the structure:

- (a) One difference between ethene and vinylidene chloride is that . . .
- 1 only ethene is an unsaturated compound.
- 2 only vinylidene chloride will react with iodine.
- 3 only vinylidene chloride is obtained from crude oil.
- 4 only ethene is a hydrocarbon.

(1 mark)

(b) The formula for poly(vinylidene chloride) is . . .

(1 mark)

(c) There are two likely consequences of wine companies using metal screw-top stoppers with polymer sealants instead of cork.

Which row in the table correctly shows the two likely consequences?

1	increased use of crude oil	loss of employment in rural Portugal
2	reduction in carbon dioxide emissions	loss of employment in rural Portugal
3	reduction in carbon dioxide emissions	loss of important forest habitat
4	increased use of crude oil	reduced amount of material to landfill

(d) Scientists are researching the consequences of using screw-top stoppers with polymer sealants instead of cork.

Which row in the table below gives the correct description of an issue and its impact?

	Issue	Impact
1	ethical	effect on the price of wine
2	social	effect on the rural communities
3	environmental	effect on the quality of wine
4	economic	effect on cork forest habitat

(1 mark)

Q7. The table shows the properties of four polymers, A, B, C and D.

	Properties		
Α	is not damaged at high temperatures and has a non-stick surface		
в	is strong, does not rot and can be pulled into fibres		
с	makes a very light, solid foam that is a good heat insulator		
D	is transparent, waterproof and stays flexible over a wide range of temperatures		

Match polymers, A, B, C and D, with the numbers 1–4 in the table below.

	How the polymer could be used		
1	to make disposable cups for hot drinks		
2	to make string and rope		
3	to make the coating on frying pans		
4	to make bags used to store frozen foods		

(4 marks)

Q8. Different polymers have different properties.

Match properties, A, B, C and D, with the uses 1-4 in the table.

- A can withstand high temperatures and is non-stick
- B can be stretched into fibres
- C makes a very light, solid foam which is a good heat insulator
- D strong, rigid and a good electrical insulator

	Uses		
1	to make disposable cups for hot drinks		
2	to make the coating on frying pans		
3	to make shirts and trousers		
4	to make the handles of tools		

(4 marks)

Q9. Scientists working for a plastics company tested three different types of poly(ethene) to see how much they would stretch before tearing.

- (a) The scientists used identical apparatus, equal-sized pieces of poly(ethene), and carried out all the tests at the same temperature. They did this so that . . .
- 1 all the variables were kept the same.
- 2 it was easier and cheaper to carry out the tests.
- 3 all the measurements would be accurate.
- 4 only the independent variable would affect the results.

(b) Cling film, a very thin sheet of poly(ethene), is used to wrap sandwiches. Which row in the table shows two properties of poly(ethene) that make it suitable for use as cling film?

	Property 1	Property 2
1	tears when stretched	is easily coloured and printed
2	is easily coloured and printed	is transparent
3	is transparent	is airtight
4	is airtight	easily melts when heated

(1 mark)

- (c) Sandwiches could be wrapped in paper and packed in paper bags. Paper is made from wood. When a tree is cut down, another tree can be planted to replace it. An advantage of using paper instead of cling film is that . . .
- 1 the use of paper bags is sustainable.
- 2 paper is non-biodegradable.
- 3 paper has been used for hundreds of years.
- 4 paper does not blow about in the wind like plastic

(1 mark)

- (d) Poly(ethene) can be recycled. A problem that has to be overcome at the recycling centre is that poly(ethene) . . .
- 1 is mixed with other polymers.
- 2 is difficult to melt down.
- 3 is a poor conductor of electricity.
- 4 is not biodegradable.

Q10. The flow chart shows a series of chemical reactions.

Match substances, A, B, C and D, with the numbers 1–4 in the flow chart.

- A Ethane
- B Ethanol
- C Ethene
- D Poly(ethene)

(4 marks)

Total marks (40)