THE MOLE

Q1. Find the number of moles by using the formula.
No. of moles $=\frac{\text { mass in grams }}{\text { relative formula mass }}$

MASS IN GRAMS	NO. OF MOLES
12 g of Mg	
2 g of H_{2}	
51 g of NH_{3}	
0.25 g of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$	
25 g of $\mathrm{H}_{2} \mathrm{O}$	
134.6 moles of $\mathrm{Li}_{2} \mathrm{O}$	
24.0 grams of FeF_{3}	
458 grams of $\mathrm{Na}_{2} \mathrm{SO}_{4}$	
237 grams of CCl_{4}	
122 grams of NO_{2}	
2	

Q2. Calculate the mass in grams from the given moles by using the formula.
Mass in grams = no. of moles \mathbf{x} relative formula mass

MOLES	MASS IN GRAMS
1 mole of carbon	
0.5 moles of HCl	
0.2 moles of CO_{2}	
3.7 moles of $\mathrm{Na}_{2} \mathrm{O}$	
4.8 moles of NaOH^{2}	
0.5 moles of CaCl_{2}	
1.7 moles of $\mathrm{H}_{2} \mathrm{O}$	
2 moles of Br_{2}	
3.8 moles of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$	
5 moles of $\mathrm{H}_{3} \mathrm{PO}_{4}$	

