

Mark Scheme (Results)

Summer 2013

International GCSE Mathematics A 4MA0/3HR

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2013
Publications Code UG036364
All the material in this publication is copyright
© Pearson Education Ltd 2013

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme.
- Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Types of mark

o M marks: method marks

A marks: accuracy marks

o B marks: unconditional accuracy marks (independent of M marks)

Abbreviations

- o awrt answers which round to....
- o cao correct answer only
- o ft follow through
- o isw ignore subsequent working
- o SC special case
- oe or equivalent (and appropriate)
- o dep dependent
- o indep independent
- o eeoo each error or omission

No working

If no working is shown then correct answers normally score full marks

If no working is shown then incorrect (even though nearly correct) answers score
no marks.

With working

If there is a wrong answer indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.

If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks.

Any case of suspected misread loses A (and B) marks on that part, but can gain the M marks.

If working is crossed out and still legible, then it should be given any appropriate marks, as long as it has not been replaced by alternative work.

If there is a choice of methods shown, then no marks should be awarded, unless the answer on the answer line makes clear the method that has been used.

If there is no answer on the answer line then check the working for an obvious answer.

• Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: e.g. incorrect cancelling of a fraction that would otherwise be correct.

It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect e.g. algebra.

Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded in another.

Apart from Questions 4c, 5, 21, 23b and 25 (where the mark scheme states otherwise), the correct answer, unless clearly obtained by an incorrect method, should be taken to imply a correct method.

Question	Working	Answer	Mark	Notes
1 (a)	1 - (0.3 + 0.35 + 0.15)			M1 for a complete method
		0.2 oe	2	A1 for 0.2 oe as a fraction or percentage eg.20%, $\frac{1}{5}$ etc.
(b)	0.15 x 40 oe	6	2	M1 A1 cao
				NB. An answer of $\frac{6}{40}$ scores M1 A0
				Total 4 marks
2	495 ÷ 2.25			M2 M1 for 495÷2.15 or 230.2 rounded or truncated to 3 or more sig figs
		220	3	A1 cao Alterative M1 for 495÷135 or 3.6 or 3.666 rounded or truncated to 3 or more sig figs M1dep for "3.66" x 60 A1 220 cao
				Total 3 marks

3 (a)	$\frac{6}{32} \times 100$	18.75	2	M1 Allow "32" from evidence of adding frequencies A1 Accept 19 if the correct method or 18.75 seen
(b)	(7x10)+(16x30)+(3x50)+(6x70)			M1 f x x for 3 products with x used consistently within interval (incl. end points) & intention to add
	=70 + 480 + 150 + 420			M1(dep) use of correct half way values $(\frac{1120}{32} \text{ implies M2})$
		1120	3	A1 cao
				Total 5 marks

4 (a)		18a – 12b + 6c	1	B1
		(oe)		
(b)		t(t - 10)	2	B2 also accept $(t \pm 0)(t - 10)$ for B2
				B1 for factors which, when expanded and simplified, give only two terms, one of which is correct.
				SC B1 for $t(t-10t)$
(c)	3x = 7 - 2x			M1 or $x = \frac{7}{3} - \frac{2x}{3}$
	5x = 7 or $5x - 7 = 0$			M1 or $\frac{5x}{3} = \frac{7}{3}$ or $x + \frac{2x}{3} = \frac{7}{3}$
		1.4oe	3	A1 Answer dependent on at least M1
				Total 6 marks

5	$\frac{8}{18} - \frac{3}{18} \text{or} \frac{8n}{18n} - \frac{3n}{18n}$ $\frac{8}{18} - \frac{3}{18} = \frac{5}{18} \text{or}$ $\frac{8n}{18n} - \frac{3n}{18n} = \frac{5n}{18n} \left(= \frac{5}{18} \right)$		2	M1 for 2 correct fractions with a common denominator a multiple of 9 & 6 A1 $\frac{5}{18}$ coming from $\frac{8}{18} - \frac{3}{18}$ or for final fraction equivalent to $\frac{5}{18}$
				Total 2 marks
		<u></u>		
6 (a)		Enlargement (Scale factor) 2 (Centre) (0,4)	3	B1 B1 B1 NB. Award no marks for more than one transformation (i.e. if NOT a single transformation)
(b)		Shape in correct position	2	B2 vertices at(2, 0) (6, 0) (10, -4) (10, -8) B1 for any 2 vertices correct or correct orientation but wrong position or rotating shape P correctly - vertices at 7, 0), (9, 0) (11, -2), (11, -4)
				Total 5 marks
7 (a)	$3 \times (-2)^2 - (5 \times -2)$ or $3(-2)^2 - 5(-2)$ or $3 \times (-2)^2 - 5 \times -2$ or $3 \times 4 - 5 \times -2$	22	2	M1 or 12 10 or 12 + 10 or 12 and -10
(h)	$12 = 3 \times 4^2 - 4n$	22	2	A1 cao M1 or M2 for 48 – 12 or 36
(b)	$12 = 3 \times 4^{2} - 4n$ 4n = 48 - 12 oe			M1 or M2 for 48 – 12 or 36 M1 A1 cao
		9	3	A1 cao
				Total 5 marks

8 (a) (i)	u, p, e, r	1	B1	Allow in any order
(ii)	s, c, o, m, p, u, t, e, r	1	B0 if 'p' or 'u' or 'e' or 'r'	Brackets and commas not
			are repeated	necessary
(b)	no			
	2 (or 3) are prime 2 (or 3) belongs to X & Y etc	1	answer	box ticked or "No" stated in d allow eg $X \cap Y = \{2,3\}$
				Total 3 marks

9 (a) (i)		6 ⁸	1	B1
(ii)		9 ¹⁴	1	B1 (oe e.g. 3 ²⁸ ; 81 ⁷)
(b)	$5^{n} \times 5^{3} = 5^{10}$ or $\frac{5^{n}}{5^{6}} = 5$ or $\frac{5^{n}}{5^{3}} = 5^{4}$ or $5^{n+3} = 5^{4+6}$		2	M1 or a correct equation in n eg. $n + 3 = 10$ or $n + 3 = -6 = 4$
		7		A1
				SC B1 for an answer of 5 ⁷
		_		Total 4 marks

10	$\pi \times 36.6^2$ (= 4208.35) 85 x 2 x 36.6 (=6222) "4208.35" + "6222" (=10430.35)		4	M1 or x $36.6^2 \div 2$ (=2104.17) M1 M1 dep on both previous method marks
		10400		A1 awrt 10400 (accept correct answers given in an alternative form eg. 1.04×10^4 ; 104×10^2)
				SC: B2 for an awrt 7320
				Total 4 marks

11	identify sin 52 or cos 38			M1	for use of sin 52 or use of cos 38	
	$\sin 52 = \frac{6.8}{x}$ or $(x=)\frac{6.8}{\sin 52}$ or $x = 6.8$			M1	or $\cos 38 = \frac{6.8}{x}$ or $(x =) \frac{6.8}{\cos 38}$	
	$\frac{x}{\sin 90} = \frac{\cos 6}{\sin 52}$		3			
		8.63		A1	(8.62932) awrt 8.63	
						Total 3 marks

12 (a) (i)	4200000	1	B1
(a) (ii)	(0).000382	1	B1
(b)	8.6×10^{-9} 5.64×10^{-8} 5.6×10^{-7}		B2 B1 for smallest or largest in correct position
			Total 4 marks

13 (a)	Correct $v \div h$ eg $2 \div 8$ or $\frac{5-3}{8-0}$			M1 or $y = mx + 3$ with any (x, y) on L substit	tuted eg. $5 = 8m + 3$
	8-0 oe	0.25 oe	2	A1	
(b)		y = "0.25"x + 3	1	B1 ft Accept equivalents (e.g. $4y = x + 12$)	Gradient used must be
		oe			0.25 or the gradient
(c)		y = "0.25"x - 1 oe e.g. $4y = x - 4$	2	M1ft for $y = "0.25"x + c$ ($c \ne -1$) or $c = -1$ as a statement or $"0.25"x - 1$ or $L = "0.25"x - 1$ or $-2 = "0.25"x + c$ A1ft from $"0.25"$ with $c = -1$ or c evaluated	found in (a)
					Total 5 marks

Blocks at heights 2.4, 6.8, 3 squares Blocks correct (B2 for any 2 blocks correct) (B1 for any one block correct or for correct frequency density calculated or marked ((0.8), 1.3, 3.4 and 1.5) or 1 square = 2.5 people stated or 1 person = 10 squares)	12.8 oe 2 A1 M1 M1 for 1.6^2 (=2.56) or 0.625^2 (=0.39) or $\left(\frac{8}{5}\right)^2 \left(=\frac{64}{25}\right)$ or $\left(\frac{5}{8}\right)^2 \left(=\frac{25}{64}\right)$ or $0.5 \times 8 \times 12.8'' \times \sin 36.9$ A1 cao Total 4 marks Ks at heights 2.4, 6.8, 3 res (B2 for any 2 blocks correct) (B1 for any one block correct or for correct frequency density calculated or marked ((0.8), 1.2, 3.4 and 1.5) or 1 square = 2.5 people stated or
(b) 12×1.6^2	M1 M1 for 1.6^2 (=2.56) or 0.625^2 (=0.39)
(b) 12×1.6^2	M1 M1 for 1.6^2 (=2.56) or 0.625^2 (=0.39)
(b) 12×1.6^2	M1 M1 for 1.6^2 (=2.56) or 0.625^2 (=0.39)
	or $\left(\frac{8}{5}\right)^2 \left(=\frac{64}{25}\right)$ or $\left(\frac{5}{8}\right)^2 \left(=\frac{25}{64}\right)$ or $0.5 \times 8 \times 12.8'' \times \sin 36.9$ A1 cao Total 4 marks As at heights 2.4, 6.8, 3 res B3 for all 3 blocks correct (B2 for any 2 blocks correct) (B1 for any one block correct or for correct frequency density calculated or marked ((0.8), 1.2, 3.4 and 1.5) or 1 square = 2.5 people stated or 1 person = 10 squares)
30.72 2 or 0.5 x 8 x "12.8" x sin 36.9 Total 4 m. Blocks at heights 2.4, 6.8, 3 squares Block	or 0.5 x 8 x "12.8" x sin 36.9 A1 cao Total 4 marks As at heights 2.4, 6.8, 3 res B3 for all 3 blocks correct (B2 for any 2 blocks correct) (B1 for any one block correct or for correct frequency density calculated or marked ((0.8), 1.2, 3.4 and 1.5) or 1 square = 2.5 people stated or 1 person = 10 squares)
30.72 2 or 0.5 x 8 x "12.8" x sin 36.9 Total 4 m. Blocks at heights 2.4, 6.8, 3 squares Block	or 0.5 x 8 x "12.8" x sin 36.9 A1 cao Total 4 marks As at heights 2.4, 6.8, 3 res B3 for all 3 blocks correct (B2 for any 2 blocks correct) (B1 for any one block correct or for correct frequency density calculated or marked ((0.8), 1.2, 3.4 and 1.5) or 1 square = 2.5 people stated or 1 person = 10 squares)
30.72 2 or 0.5 x 8 x "12.8" x sin 36.9 Total 4 m. Blocks at heights 2.4, 6.8, 3 squares Block	or 0.5 x 8 x "12.8" x sin 36.9 A1 cao Total 4 marks As at heights 2.4, 6.8, 3 res B3 for all 3 blocks correct (B2 for any 2 blocks correct) (B1 for any one block correct or for correct frequency density calculated or marked ((0.8), 1.2, 3.4 and 1.5) or 1 square = 2.5 people stated or 1 person = 10 squares)
30.72 2 A1 cao Total 4 m Blocks at heights 2.4, 6.8, 3 squares Blocks correct (B2 for any 2 blocks correct) (B1 for any one block correct or for correct frequency density calculated or marked ((0.8), 1.3, 3.4 and 1.5) or 1 square = 2.5 people stated or 1 person = 10 squares)	30.72 2 A1 cao Total 4 marks As at heights 2.4, 6.8, 3 Total 5 locks correct (B2 for any 2 blocks correct) (B1 for any one block correct or for correct frequency density calculated or marked ((0.8), 1.2, 3.4 and 1.5) or 1 square = 2.5 people stated or 1 person = 10 squares)
Blocks at heights 2.4, 6.8, 3 squares Blocks correct (B2 for any 2 blocks correct) (B1 for any one block correct or for correct frequency density calculated or marked ((0.8), 1.3, 3.4 and 1.5) or 1 square = 2.5 people stated or 1 person = 10 squares)	Total 4 marks See See See See See See See See See Se
Blocks at heights 2.4, 6.8, 3 squares Blocks correct (B2 for any 2 blocks correct) (B1 for any one block correct or for correct frequency density calculated or marked ((0.8), 1.3, 3.4 and 1.5) or 1 square = 2.5 people stated or 1 person = 10 squares)	Total 4 marks See See See See See See See See See Se
Blocks at heights 2.4, 6.8, 3 squares Blocks at heights 2.4, 6.8, 3 squares Blocks at heights 2.4, 6.8, 3 squares Blocks correct (B2 for any 2 blocks correct) (B1 for any one block correct or for correct frequency density calculated or marked ((0.8), 1.3 3.4 and 1.5) or 1 square = 2.5 people stated or 1 person = 10 squares)	B3 for all 3 blocks correct (B2 for any 2 blocks correct) (B1 for any one block correct or for correct frequency density calculated or marked ((0.8), 1.2, 3.4 and 1.5) or 1 square = 2.5 people stated or 1 person = 10 squares)
Blocks at heights 2.4, 6.8, 3 squares Blocks at heights 2.4, 6.8, 3 squares Blocks at heights 2.4, 6.8, 3 squares Blocks correct (B2 for any 2 blocks correct) (B1 for any one block correct or for correct frequency density calculated or marked ((0.8), 1.3 3.4 and 1.5) or 1 square = 2.5 people stated or 1 person = 10 squares)	B3 for all 3 blocks correct (B2 for any 2 blocks correct) (B1 for any one block correct or for correct frequency density calculated or marked ((0.8), 1.2, 3.4 and 1.5) or 1 square = 2.5 people stated or 1 person = 10 squares)
squares (B2 for any 2 blocks correct) (B1 for any one block correct or for correct frequency density calculated or marked ((0.8), 1.3 3.4 and 1.5) or 1 square = 2.5 people stated or 1 person = 10 squares)	(B2 for any 2 blocks correct) (B1 for any one block correct or for correct frequency density calculated or marked ((0.8), 1.2, 3.4 and 1.5) or 1 square = 2.5 people stated or 1 person = 10 squares)
squares (B2 for any 2 blocks correct) (B1 for any one block correct or for correct frequency density calculated or marked ((0.8), 1.3 3.4 and 1.5) or 1 square = 2.5 people stated or 1 person = 10 squares)	(B2 for any 2 blocks correct) (B1 for any one block correct or for correct frequency density calculated or marked ((0.8), 1.2, 3.4 and 1.5) or 1 square = 2.5 people stated or 1 person = 10 squares)
(B1 for any one block correct or for correct frequency density calculated or marked ((0.8), 1.3 3.4 and 1.5) or 1 square = 2.5 people stated or 1 person = 10 squares)	(B1 for any one block correct or for correct frequency density calculated or marked ((0.8), 1.2, 3.4 and 1.5) or 1 square = 2.5 people stated or 1 person = 10 squares)
(B1 for any one block correct or for correct frequency density calculated or marked ((0.8), 1.3 3.4 and 1.5) or 1 square = 2.5 people stated or 1 person = 10 squares)	(B1 for any one block correct or for correct frequency density calculated or marked ((0.8), 1.2, 3.4 and 1.5) or 1 square = 2.5 people stated or 1 person = 10 squares)
for correct frequency density calculated or marked ((0.8), 1.7 3.4 and 1.5) or 1 square = 2.5 people stated or 1 person = 10 squares)	for correct frequency density calculated or marked ((0.8), 1.2, 3.4 and 1.5) or 1 square = 2.5 people stated or 1 person = 10 squares)
3.4 and 1.5) or 1 square = 2.5 people stated or 1 person = 10 squares)	3.4 and 1.5) or 1 square = 2.5 people stated or 1 person = 10 squares)
1 square = 2.5 people stated or 1 person = 10 squares)	1 square = 2.5 people stated or 1 person = 10 squares)
1 person = 10 squares)	1 person = 10 squares)
Total 3 m	Total 3 marks
16	•
168.5 - 121.5 M1 for 168.5 or 168.49 or 168.499 or 121.5	M1 for 168.5 or 168.49 or 168.499 or 121.5
47 2 A1 for 47 with no incorrect working	AZ 2 A1 for 47 with no incorrect working
77 2	7/ 2
Total 2 m	
	Total 2 marks
	I otal 2 marks
$t^2 = $ M1 squaring both sides	Iotal 2 marks
$ nt^2=n+3 $	
$nt^2 - n = 3$	
$n(t^2 - 1) = 3$ M1 isolating terms in n	M1 squaring both sides
	M1 squaring both sides M1 isolating terms in <i>n</i>
M1 factorising	M1 squaring both sides M1 isolating terms in n
M1 factorising	M1 squaring both sides M1 isolating terms in n M1 factorising
M1 factorising	M1 squaring both sides M1 isolating terms in n M1 factorising
n = -	M1 squaring both sides M1 isolating terms in n M1 factorising
	Intal 7 mar/s

Total 4 marks

(b) $\frac{1}{3} + \frac{1}{2} \times "\frac{1}{3}" + \frac{1}{2} \times "\frac{1}{2}" \times "\frac{1}{3}"$ $\frac{7}{12}$ Alternative method for (b) $1 - \left("\frac{1}{6} + \frac{1}{2} \times "\frac{1}{6} + \frac{1}{2} \times "\frac{1}{6} + \frac{1}{2} \times "\frac{1}{2} \times "\frac{1}{2} \times "\frac{1}{2}" \times "\frac{1}{2}" \right)$ $\frac{7}{12}$ Al accept 0.583 rounded or truncated to 2 or M1 for $\frac{1}{2} \times "\frac{1}{6}$ or $\frac{1}{2} \times "\frac{1}{2} $	nore decimal
	ore sf
19 (a) $(v =) 18t - 3t$ 2 B2 for $18t - 3t^2$ oe seen as final answer	Juli O marks

19 (a)	(v =) 18t - 3 <i>t</i>	2	B2 for $18t - 3t^2$ oe seen as final answer B1 for $18t$ or $3t^2$ or $-3t^2$
(b)	(a=) "18 - 6 t'' (=0) (t=) 3	2	M1ft ft if differentiating correctly a quadratic with 2 or 3 terms A1ft
			Total 4 marks

20	$10 \times x = 3 \times 15$ or			M1
	$(x=) 3 \times 15 \div 10$ oe		2	
		4.5 oe		A1
				Total 2 marks

21 (a)	$\frac{7}{x} \times \frac{6}{x+1} = 0.2$			M1 for $\frac{7}{x} \times \frac{6}{x-1} = 0.2$ or $\frac{7}{x} \times \frac{6}{x-1} = \frac{1}{5}$
	42 = 0.2x(x-1)		2	
	$210 = x^2 - x$			
		$x^2 - x - 210 (=0)$		A1* * answer given; sufficient steps must be seen to get to correct quadratic
(b)	(x-15)(x+14) (=0)			M2 M1 for $(x \pm 15)(x \pm 14)$ M1 $\frac{-(-1) \pm \sqrt{(-1)^2 - 4 \times 1 \times (-210)}}{2}$
			3	(may be partially evaluated, condone no brackets around negative numbers, accept 1 ²)
		-14 , 15		A1 (dep on M2) for -14, 15 or 15 M1 (indep) for $\sqrt{841}$ or 29 A1 (dep on M1) for -14, 15 or 15
				Total 5 marks
22	$(\sqrt{a})^2 + (\sqrt{8a})^2 + 2\sqrt{a}\sqrt{8a}$			M1 for correct expansion of brackets
	$a + 8a + 2a\sqrt{8}$ $9a + 4a\sqrt{2}$		3	A1 for $9a + 4a\sqrt{2}$
		$a = 6 \ b = 24$		A1
				Total 3 marks
23 (a) (i)		½ y – x	1	B1 or $- x + \frac{1}{2} y$ oe eg $y - x - \frac{1}{2} y$
(ii)		y - 2x	1	B1 or $-2x + y$ oe eg $x + y - 3x$
(b)	OD is	OD is parallel to AM twice length of AM oe	2	B1 both marks dependent on a(i) and a(ii) correct and simplified
				Total 4 marks

24	$(FH^2 =)5^2 + 5^2 (=50)$			M1 or correct Pythagoras statement to find any diagonal
	$(FH^2 =) 5^2 + 5^2 (=50)$ $\sqrt{50}$ or $5\sqrt{2}$ (= 7.07)			A1 for $\sqrt{50}$ or $5\sqrt{2}$ or awrt 7.1
	$\sqrt{30}$ or $3\sqrt{2}$ (= 7.07)			At for $\sqrt{30}$ or $3\sqrt{2}$ or awrt 7.1
	ton v 5			M1 dep on previous M1
	$\tan x = \frac{5}{\sqrt{50}}$			$\sqrt{50}$ "
	430			or $\sin x = \frac{5}{\sqrt{75}}$ or $\cos x = \frac{\sqrt{50}}{\sqrt{75}}$ or
			4	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
			•	correct statement using Sine or Cosine rule with angle AHF as
				the only unknown
				(NB. $\sqrt{75}$ may be $5\sqrt{3}$ or awrt 8.7 may be used for AH if any other
				value used then it must clearly come from correct method to find AH)
		35.3		A1 35.264 awrt 35.3
	Alternative scheme	33.5		
	$(AH^2 =) 5^2 + 5^2 + 5^2 (=75)$			M1
	$\sqrt{75}$ or $5\sqrt{3}$ (= 8.66)			A1 for $\sqrt{75}$ or $5\sqrt{3}$ or awrt 8.7
	$\sqrt{13}$ OF $3\sqrt{3}$ (= 8.00)			· · · · · · · · · · · · · · · · · · ·
	$\sin r = 5$			M1 dep on previous M1
	$\sin x = \frac{5}{\sqrt{75}}$			
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	35.3	4	A1 35.264 awrt 35.3
		33.3	+	Total 4 marks
				Total 4 marks

25	$x^2 + (3 - 2x)^2 = 26$		M1 or $y^2 + \left(\frac{3-y}{2}\right)^2 = 26$
	$x^{2} + 9 - 6x - 6x + 4x^{2} = 26$ or $5x^{2} - 12x + 9 = 26$		$y^2 + \left(\frac{9 - 6y + y^2}{4}\right) = 26$
			or $y^2 + \left(\frac{9 - 3y - 3y + y^2}{4}\right) = 26$
			M1 (indep) for correct expansion of $(3-2x)^2$ or $\left(\frac{3-y}{2}\right)^2$ even if unsimplified
	$5x^2 - 12x - 17 (= 0)$		A1 $5y^2 - 6y - 95 (= 0)$
	(5x - 17)(x + 1) (= 0)		M1 $(5y + 19)(y - 5)$ (=0) oe
	or $\frac{12 \pm \sqrt{(-12)^2 - 4 \times 5 \times (-17)}}{2 \times 5}$		or $\frac{6\pm\sqrt{(-6)^2-4\times5\times(-95)}}{2\times5}$
	(may be partially evaluated;		(may be partially evaluated; condone lack of brackets around
	condone lack of brackets around		negative numbers)
	negative numbers) eq.		eg.
			$\frac{6\pm\sqrt{1936}}{10}$ or $\frac{6\pm44}{10}$
	$\frac{12 \pm \sqrt{144 + 340}}{10} \text{ or } \frac{12 \pm 22}{10}$		10 10
	x = 3.4 oe , x = -1		A1 $y = 5$, $y = -3.8$ oe dep on all preceding marks
		x = 3.40e	A1
		$\begin{array}{c} x = -1 \\ y = 5 \end{array}$	ND No marks for y = 1 y
		y = -3.8 oe	NB. No marks for $x = -1$, $y = 5$
			with no working
			Total 6 marks

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467
Fax 01623 450481
Email <u>publication.orders@edexcel.com</u>
Order Code UG036364 Summer 2013

For more information on Edexcel qualifications, please visit our website $\underline{www.edexcel.com}$

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE

Downloaded from TopLevels.co.uk

