

Mark Scheme (Results)

January 2016

International GCSE Mathematics A 4MA0/4HR

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at <u>www.edexcel.com</u>.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2016 Publications Code UG043268 All the material in this publication is copyright © Pearson Education Ltd 2016

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme.
 Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Types of mark
 - o M marks: method marks
 - A marks: accuracy marks
 - B marks: unconditional accuracy marks (independent of M marks)

Abbreviations

- cao correct answer only
- o ft follow through
- isw ignore subsequent working
- SC special case
- oe or equivalent (and appropriate)
- o dep dependent
- o indep independent
- o eeoo each error or omission

• No working

If no working is shown then correct answers normally score full marks

If no working is shown then incorrect (even though nearly correct) answers score no marks.

• With working

If there is a wrong answer indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.

If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks.

Any case of suspected misread loses A (and B) marks on that part, but can gain the M marks.

If working is crossed out and still legible, then it should be given any appropriate marks, as long as it has not been replaced by alternative work.

If there is a choice of methods shown, then no marks should be awarded, unless the answer on the answer line makes clear the method that has been used.

If there is no answer on the answer line then check the working for an obvious answer.

• Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: eg. Incorrect cancelling of a fraction that would otherwise be correct.

It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect eg algebra.

Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

• Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded in another.

International GC	CSE Maths			
Apart from Que	estions 6e, 14d and 24 (where the mark scl	heme states otherwise), the	correct ans	swer, unless clearly obtained by an
incorrect metho	od, should be taken to imply a correct met	hod.		
Q	Working	Answer	Mark	Notes
1 (a)	$(40 \div 16) \times 240$ oe			M1 for a fully correct method
		600	2	A1
(b)	$(600 \div 120) \times 16$ oe			M1 for a fully correct method
		80	2	A1
(c)	240÷150 or 150 : 240 oe			M1
		1.6 oe	2	A1
				Total 6 marks

2 (a) (i)		57	1	B1	
(ii)		Corresponding	1	B1	For correct reason
		angles			
(b)	$(5-2) \times 180$ or 3×180 or $(2 \times 5 - 4) \times 90$ or			M1	for correct method to find total of
	6 × 90 or 360 +180 or 540				angles in a pentagon or
	'540' – (86+142+72+115) oe			M1	(dep) fully correct method to find y
		125	3	A1	cao
	Alternative method (exterior angles)				
	360 - ("94" + "38" + "108" + "65") (=55) or			M1	if just values seen then condone
	360 - 305 (=55)				one error in exterior angles
	180 – "55"			M1	(dep) fully correct method to find y
		125	3	A1	cao
					Total 5 marks

3	$\frac{3 \times 5}{20} + \frac{4 \times 4}{20}$ or $\frac{15}{20} + \frac{16}{20}$			M1	for any pair of correct fractions with denominator a multiple of 20
		$\frac{31}{20}$	2	A1	dependent on M1
	Alternative				
	0.75 + 0.8 = 1.55			M1	
		$1\frac{55}{100}$		A1	dependent on M1
					Total 2 marks

4	5, 10, 20, 25, 50, 100	2	B2	If not B2 then
				B1 for at least 3 correct values and no incorrect values or all correct values with only 1 incorrect value
				Total 2 marks

5	48 ÷ 8 (=6)			M1	width of rectangle
	(8 + "6") × 2 (=28)			M1	perimeter
	"28" ÷ 4 (=7)			M1	length of side
		49	4	A1	
					Total 4 marks

6 (a)		x ⁹	1	
(b)		y^6	1	
(c)	8d + 12 - 6d + 10 oe		2	M1 for 3 terms with correct signs or 4 terms without
				signs
		2d + 22		A1 for $2d + 22$ or $2(d + 11)$
(d)	eg. $9y - 5y = 2 + 3$ or $4y = 5$			M1 for a correct equation with terms in <i>y</i> on one side and
				numbers on the other.
		1.25	2	A1 for 1.25 or $\frac{5}{4}$ or $1\frac{1}{4}$
(e)	7x - 1 = 5x			M1 multiplying x by 5 (seen as part of an equation) or
				showing
				$\frac{7}{-x} - \frac{1}{-x} = x$
				5 5
	eg 7r - 5r = 1 or $2r = 1$ or			M1 for isolating terms in r
	$\begin{array}{c} \mathbf{c} \mathbf{g} \cdot \mathbf{h} \mathbf{x} & \mathbf{c} \mathbf{x} \\ \mathbf{f} \mathbf{u} \\$			in for isoluting terms in x
	$\frac{-x}{5} - \frac{x}{5} - \frac{-5}{5}$			
		1		
		$\frac{1}{2}$ oe	3	A1 for $\frac{1}{2}$ or 0.5 dep on M1 scored
				Total 9 marks

7	(a)		15 - 19	1	B1	
	(b)	2 × 1 + 7 × 5 + 12 × 6 + 17 × 10 + 22 × 8 or 2 + 35 + 72 + 170 + 176 or 455			M2	Freq × midpoint values stated or evaluated with intention to add (condone any two errors in midpoints or frequencies). If not M2 then award M1 for all products $t \times f$ (and t is consistently within the interval, including end values) and intention to add (condone two errors).
		$ \frac{2 \times 1 + 7 \times 5 + 12 \times 6 + 17 \times 10 + 22 \times 8}{30} $ or "455" ÷ 30			M1	(dep on at least M1) for division by 30
			15.2	4	A1	accept 15.166 rounded or truncated to 4 or more sig figs Accept 15 with working (15 without working gains M0A0) NB: accept 2.25 as mid-point for mid-interval value of 1 st class (gives mean 15.175)
						Total 5 marks

8	0.16x = 192 or $16% = 192$ oe or		3	M1
	$\frac{192}{16}(=12)$			
	$\frac{192}{0.16}$ or $\frac{192}{16} \times 100$ oe			M1
		1200		A1 cao
				Total 3 marks

9	$1\frac{24}{60}$ oe or 1.4 or 84			B1	for changing time to a decimal or to minutes
	$\frac{725}{1.4}$ oe or $\frac{725}{84} \times 60$			M1	allow 725 ÷ 1.24
		518	3	A1	for 518 or 517.857
					Total 3 marks

10	(a)		1 590 000	1	B1	cao
	(b)	$2.97 \times 10^6 - 4.22 \times 10^5$ oe or			M1	
		$4.22 \times 10^5 - 2.97 \times 10^6$ oe or				
		± 2548000				
			$\pm 2.548 \times 10^{6}$	2	A1	allow $\pm 2.5 \times 10^{6}$ or $\pm 2.55 \times 10^{6}$
						if working shown.
	(c)	$1.25 \times 10^{6} \div 4.22 \times 10^{5} \approx 2.06 \text{ or } 625$			M1	
		$1.25 \times 10^{-1} + 4.22 \times 10^{-0} = 01^{-2.90.11} \text{ or } \frac{1}{211}$				
			3	2	A1	cao
						Total 5 marks

11	$\pi \times (20 - 2 \times 4) \text{ oe or } \pi \times 12 \text{ oe or } 2 \times \pi \times 6 \text{ or}$ 37.6 or 37.7 or $\frac{1}{2} \times \pi \times (20 - 2 \times 4) \text{ oe or } \frac{1}{2} \times \pi \times 12 \text{ oe or } \pi \times 6 \text{ or}$		3	M1	for a correct method to find the circumference or half of the circumference
	18.8			3.61	
	$4 + 10 + 20 + 10 + 4 + \frac{1}{2} \times "37.6"$ or			MI	(dep on previous M1) for complete method
	4 + 10 + 20 + 10 + 4 + "18.8"				
		66.8		A1	66.8 - 66.9
					Total 3 marks

12	$(4x^2+6x+6x+9) - (4x^2-6x-6x+9)$			M1	any one correct expansion	M1 for ((2x+3) + (2x - 3)) ((2x + 3) - (2x - 3))
	$4x^2 + 6x + 6x + 9 - 4x^2 + 6x + 6x - 9$	24~	2	M1	for dealing correctly with the negative sign	M1 for $(2x + 3 + 2x - 3)(2x + 3 - 2x + 3)$
		∠ 4 X	3	AI		
						Total 3 marks

13 (a)	eg. $22 \times \frac{24}{20}$ or 22×1.2			M1	for complete method or correct scale factor (may be seen within an equation) eg. 20/24 or 24/20 or 1.2 or 0.83oe
		26.4	2	A1	
(b)	eg. 28.2 - 28.2 ÷ "1.2" or 28.2 ÷ 6 oe			M1ft	for a complete method ft from "1.2" used in (a) which must come from a correct method
		4.7	2	A1	
					Total 4 marks

14	(a)		-10, (4), 6, 2,(-2), 0,(14)	2	B2	Award B1 for any 2 correct.
	(b)	(-3, -10), (-2, 4), (-1, 6), (0, 2), (1, -2), (2, 0), ((3, 14),	Correct curve	2	B2	For the correct smooth curve.
						B1 for at least 5 points plotted correctly; ft from table for plotting only provided at least B1 scored in (a).
	(c)	$1^3 - 6 \times 1 + m = 0$ or 1 - 6 + m = 0	5	1	B1	
	(d)				M1	y = x - 3 drawn
			-2.7 to -2.9	2	A1	ft from graph (dep on M1)
						Total 7 marks

15	eg. x = 0.2666 and $10x = 2.666$ or 10x = 2.666 and $100x = 26.66$			M1	Two correct decimals that, when subtracted, will leave a non-recurring value with intention to subtract. Must see a recurring symbol or 3+ sixes.
		show	2	A1	Must see a fraction prior to seeing $\frac{4}{15}$
	Alternative method				
	eg. $x = 0.0666$ and $100x = 6.666$ with subtraction			M1	for conversion of 0.0666 to a fraction
			2	A1	for conclusion with all steps seen
					Total 2 marks

16	$Q = \frac{"k"}{r^2}$		3	M1	k must be a letter not a number
	t ²				
	$320 = \frac{"k"}{0.5^2}$ or "k" = 80			M1	for substitution (implies first M1)
		$Q = \frac{80}{t^2}$		A1	Award 3 marks for $Q = \frac{"k"}{t^2}$ and
		- l			" k " = 80 stated anywhere
					Total 3 marks

17	(a)		0.4, 0.9, 0.3, 0.7 in		B2 All correct
			appropriate places	2	(B1 for any one correct)
	(b)	0.6×0.1			M1
			0.06	2	A1 $ar 60/ar 3$
					$\frac{1}{50}$ or $\frac{1}{50}$ or $\frac{1}{50}$
	(c)	$(0.6 \times 0.9) + (0.4' \times 0.7)$			M2ft Award M1 for one correct product
			0.82	3	A1 $ar 820 (ar 41)$
					$\frac{0182\%01}{50}$ 00
					Total 7 marks

18 (a)	1cm × 1cm square = 2.5 people or 1 large square = 10 people or 4.8 on axis corresponding to top of 20-25 bar or Correct scale marked on vertical axis or 10 small squares = 1 person oe		2	M1	
		31		A1	
(b)	Freq densities: 38/10 (=3.8), 63/15 (=4.2), 24/30 (=0.8)		2	M1	2 correct frequency densities or 1 of the 3 bars correctly drawn
				A1	All 3 bars correctly drawn
					Total 4 marks

19	4g - 9eg = 7 - 3e or $3e - 7 = 9eg - 4g$			M1	Correctly collecting terms in <i>g</i> on one side and everything else on the other.
	g(4-9e) = 7-3e or $3e-7 = g(9e-4)$			M1	Factorising $g(4-9e)$ or $g(9e-4)$
		$g = \frac{7 - 3e}{4 - 9e} \text{ or}$ $g = \frac{3e - 7}{9e - 4}$	3	A1	
					Total 3 marks

20	$\frac{3(2x+5) - 6(x+2)}{(x+2)(2x+5)}$			M1	For expressing both fractions correctly with a common denominator. Allow as two separate fractions. Condone one error in numerator expansion.
	$\frac{6x+15-6x-12}{(x+2)(2x+5)}$			M1	For removing brackets correctly in a correct single fraction. Allow denominator to be expanded or 2 brackets.
		$\frac{3}{(x+2)(2x+5)}$	3	A1	$\frac{3}{2x^2+9x+10}$ or
					Total 3 marks

21	(BD ² or AC ² =) $15^2 + 15^2$ or $\sqrt{450}$ or $15\sqrt{2}$ or 21.2			M1	A correct statement to find diagonal of base
	V450 01 15V2 01 21.2				
	eg. " $\sqrt{450}$ " $^2 = 12^2 + 12^2 - 2 \times 12 \times 12 \times \cos BED$ 0.5" $\sqrt{450}$ "			M1	dep for use of cosine rule – correct statement in any
	or $\sin BEX = \frac{0.3 \sqrt{450}}{12}$				form or correct trig statement to find angle <i>BED</i> or angle <i>BEX</i> or angle <i>EBD</i> or angle <i>EDB</i>
	or $\cos EBD = \frac{0.5"\sqrt{450"}}{12}$				NB: Any multi-step method must be fully correct
	eg $DEB = \cos^{-1}\left(\frac{12^2 + 12^2 - "450"}{2 \times 12 \times 12}\right)$			M1	Complete correct method to find angle <i>DEB</i>
	or $DEB = 2 \times \sin^{-1} \left(\frac{0.5 \times \sqrt[n]{\sqrt{450}}}{12} \right)$				
	or $DEB = 180 - 2 \times \cos^{-1} \left(\frac{0.5 \times \sqrt[n]{450}}{12} \right)$				
	or $DEB = 55.7$ or 56° (from ambiguous case of Sine Rule)				
		124	4	A1	answer in range 124 – 124.3
					Total 4 marks

22	$a^2 + a\sqrt{b} + a\sqrt{b} + b$ or			M1	Correct expansion
	$a^2 + a\sqrt{b} + a\sqrt{b} + \left(\sqrt{b}\right)^2$				
		6		A1	For <i>a</i>
		13	3	A1	For <i>b</i>
					Total 3 marks

					Total 4 marks
		121°	4	A1	
		59°		A1	
	84				84 84 84
	$\sin r = \frac{72}{2}$			M1	For $\sin r = \frac{72}{100}$ or
					including 12, 14, $\sin x$ and 72
23	$0.5 \times 12 \times 14 \times \sin r = 72$			M1	For a correct equation for the area

24	$x^2 + (3x+2)^2 = 20$		6	M1	for elimination of one variable
					$\left(\frac{y-2}{3}\right)^2 + y^2 = 20$
	$x^2 + 9x^2 + 6x + 6x + 4 = 20$			M1	indep for correct expansion ie. $9x^2 + 6x + 6x + 4$ or $\frac{y^2 - 2y - 2y + 4}{9}$
	$ \begin{array}{r} 10x^2 + 12x - 16 = 0 \\ (5x^2 + 6x - 8 = 0) \end{array} $			A1	Correct simplified 3 part quadratic equation (may not be equated to zero) $10y^2 - 4y - 176 = 0$ or $5y^2 - 2y - 88 = 0$
	eg. $(10x - 8)(x + 2)$ or $(5x - 4)(2x + 4)$ or (5x - 4)(x + 2) or $\frac{-12\pm\sqrt{12^2 - 4 \times 10 \times -16}}{2 \times 10}$ oe			M1	for correct factorisation or substitution into quadratic formula ft (dep on at least 1 previous M1 scored) a 3 term quadratic for this mark only eg. $(5y - 22)(y + 4) = 0$
				A1	for both <i>x</i> values (or both <i>y</i> values)
		$x = \frac{4}{5}, y = \frac{22}{5}$ or x = -2, y = -4		A1	for both solutions with <i>x</i> and <i>y</i> values correctly paired
					Total 6 marks

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London WC2R ORL

Downloaded from TopLevels.co.uk