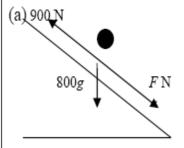
Mark Scheme (Results) January 2007

GCE


GCE Mathematics

Mechanics M2 (6678)

January 2007 6678 Mechanics M2 Mark Scheme

Question Number	Scheme	Marks
1.	(a) $\frac{1}{2}0.8(15^2 - 10^2) = 50$ (J)	M1 A1 2
	(b) $F = \mu R = \mu 0.8g$ Work-energy $\mu 0.8g \times 20 = 50$ ft their (a) $\mu \approx 0.32$ accept 0.319	
	Alternative for (b) $v^{2} = u^{2} + 2as \implies a = \frac{15^{2} - 10^{2}}{2 \times 20} = 3.125$ N2L $F = \mu mg = ma = 3.125m$ $\mu \approx 0.32 \qquad \text{accept } 0.319$	M1 M1 A1ft A1 <u>4</u>
	Alternative for (b) $WE \qquad F = \frac{50}{20} (= 2.5)$ $F = \mu R \Rightarrow \frac{50}{20} = \mu 0.8g \qquad \text{ft their (a)}$ $\mu \approx 0.32$	M1 A1 ft A1 4
	The first M1 for (b) could be scored in (a): $v^{2} = u^{2} + 2as \Rightarrow 10^{2} = 15^{2} - 2 \times 20 \times (-)a \Rightarrow a = (-)\frac{125}{40}$ $F = ma \Rightarrow F = 2.5$ $WD = F \times d \Rightarrow 2.5 \times 20 = 50J$	(b)M1 (a)M1A1

2.

$$F+800g\sin\alpha=900$$

$$F = 573\frac{1}{3}$$

$$W = 573\frac{1}{3} \times 15 = 8600$$

$$= 8.6 \, kW$$

M1

A1

M1

M1

A1

M1

A1 <u>4</u>

NB. Going up hill is an error, not a Misread

(b) N2L
$$800 \times 9.8 \times \frac{1}{24} - 900 = 800a$$
 *
$$a = -\frac{43}{60} \qquad \text{awrt } -0.72$$

$$0 = 15 - \frac{43}{60}T$$

$$T \approx 21 \qquad \text{accept } 20.9$$

Alcso 4 8

* If they are using their F from (a) then they need to have scored the M1 in (a) in order to score the M1 here.

Alternative for (b)

WD:
$$573\frac{1}{3}s = \frac{1}{2} \times 800 \times 15^2$$

 $s = 157$

Use of
$$v^2 = u^2 + 2as$$

M1 for getting as far as an equation in a.

$$a = 0.72$$

A1

finish as above.

2nd Alternative for (b)

Ft = Change in momentum:

M1 Using the correct F

M1 Use of the method to form an equation

A1 Equation correct unsimplified but fully substituted

A1 $T \approx 21$

Question Number	Scheme	Marks
3.	(a) Large Small Template Mass Ratios 24^2 8^2 , 512 anything in ratio 9 : 1 :8 (c.1810 c.200 c.1610) M(A) $9 \times 24 = 16 \times 1 + 8\overline{x}$ $\overline{x} = 25$ (cm) exact	B1, B1ft M1* A1 DM1* A1 <u>6</u>
	(b) M(axis) $11M = 12 \times \frac{1}{4}m$ ft their \overline{x} $((36 - \overline{x})M = 12 \times \frac{1}{4}m)$ $M = \frac{3}{11}m \text{ (o.e.e.)}$	M1 † A1ft DM1 † A1 4 10
4. (a) (b) (c) (c)	NEL $3v - (-v) = eu$ $u = 8v$ LM $8mv = -mv + 3kmv$ ft their u $(m \times (u) = -mv + 3kmv)$ $k = 3$ LM $9mv = -3my + 11my$ ft their k NEL $2y = e \times 3v$ $y = \frac{9}{8}v \Rightarrow e = \frac{3}{4} \bigstar cso$	M1 A1 A1 3 M1 A1ft A1 3 M1 A1ft M1 A1 4
	$y = \frac{9}{8}v > v \implies \text{ further collision between } P \text{ and } Q$ Al is cso – watch out for incorrect statements re. velocity	M1 A1 <u>2</u> 12

Question Number	Scheme	Marks
1	Scheme $M(A) T \sin \theta \times 4a = mg \times 2a + 2mg \times 3a$ $T = \frac{8mg}{4} \times \frac{5}{3} = \frac{10}{3} mg$ $Accept 32.7m, 33m$ $E = \frac{8mg}{4} \times \frac{5}{3} = \frac{10}{3} mg$ $Accept 32.7m, 33m$ $R = T \cos \theta = \frac{10}{3} mg \times \frac{4}{5} := \frac{8}{3} mg \text{\star} \text{\star} $	Marks M1* A1=A1 DM1* A1 5 M1 A1ft; A1 3 M1 A1ft M1 A1 4 12

6.	(a)	N2L $(1.5t^2 - 3)\mathbf{i} + 2t\mathbf{j} = 0.5\mathbf{a}$ $\mathbf{a} = (3t^2 - 6)\mathbf{i} + 4t\mathbf{j}$	M1 A1	2	
	(b)	$\mathbf{v} = (t^3 - 6t)\mathbf{i} + 2t^2\mathbf{j} (+\mathbf{c})$	M1 A1		
		$t = 2$ $-4\mathbf{i} + 5\mathbf{j} = -4\mathbf{i} + 8\mathbf{j} + \mathbf{c}$ $(\mathbf{c} = -3\mathbf{j})$	M1		
		$\mathbf{v} = (t^3 - 6t)\mathbf{i} + (2t^2 - 3)\mathbf{j} \qquad (\mathbf{m}\mathbf{s}^{-1})$	A1		
		$t = 3$ $v = 9i + 15j (m s^{-1}) *$ cso	A1	<u>5</u>	
	(c)	$\mathbf{Q} = 0.5(-3\mathbf{i} + 20\mathbf{j} - (9\mathbf{i} + 15\mathbf{j})) (= 0.5(-12\mathbf{i} + 5\mathbf{j}))$	M1		
		$ \mathbf{Q} = 0.5\sqrt{(5^2 + 12^2)} = 6.5$	M1 A1	<u>3</u>	
	(d)	acute angle is $\arctan \frac{5}{12} \approx 23^{\circ}$	M1 A1		
		or required angle is $\arctan \frac{-5}{12}$			
		or acute angle is $\arccos \frac{12}{13} \approx 23^{\circ}$			
		or required angle is $\arccos \frac{-12}{13}$			
		required angle is 157° awrt 157°, 203°	A1	3	13

Question Number	Scheme	Marks
7.	(a) Energy $\frac{1}{2}m(24.5^2 - u^2) = mg \times 15$	M1 A1=A1
	$u^{2} = 24.5^{2} - 30g = 306.25$ $u = \sqrt{306.25} = 17.5 \bigstar $ cso	A1 <u>4</u>
	(b) $\to u_x = u \cos \theta = 17.5 \times 0.8 = 14$	B1
	$\psi = \arccos \frac{14}{24.5} \approx 55^{\circ} \qquad \text{accept } 55.2^{\circ}$	M1 A1 <u>3</u>
	(0.96 rads, or 0.963 rads)	
	(c) $\uparrow u_y = u \sin \theta = 17.5 \times 0.6 = 10.5$	B1
	$s = ut + \frac{1}{2}at^2 \implies -45 = 10.5t - 4.9t^2$	M1 A1
	leading to $t = 4.3$, awrt $t = 4.3$ or $t = 4\frac{2}{7}$	A1
	$\rightarrow BD = 14 \times 4\frac{2}{7}$ (14 x t) ft their t	M1 A1ft
	= 60 (m) only	A1 <u>7</u> 14
	Alternative for (a)	
	$\rightarrow u_x = u \cos \theta = 0.8u , \uparrow u_y = u \sin \theta = 0.6u$	
	$v_y^2 = 0.36u^2 + 2 \times 9.8 \times 15 = 0.36u^2 + 294$	
	$24.5^2 = u_x^2 + v_y^2 = 0.64u^2, +0.36u^2 + 294$	M1 A1,A1
	$u^2 = 306.25 \implies u = 17.5 \bigstar$ cso	A1 <u>4</u>
	Alternative for (b) $\rightarrow u_x = u \cos \theta = 17.5 \times 0.8 = 14$	B1
	$\uparrow v_y^2 = u^2 \sin^2 \theta + 2 \times 9.8 \times 15 = 404.25$	
	$\psi = \arctan \frac{\sqrt{404.25}}{14} \approx 55^{\circ} \qquad \text{accept } 55.2^{\circ}$	M1 A1 <u>3</u>
	Alternative for (c) Use of $y = x \tan \theta - \frac{g \sec^2 \theta}{2u^2} x^2$	M1
	$-45 = \frac{3}{4}x, -\frac{g}{2 \times 17.5^2} \times \frac{25}{16}x^2$	B1,A1
	$x^2 - 30x - 1800 = 0$ o.e. Factors or quadratic formula BD = 60 (m)	A1 M1 A1ft A1