1. \boldsymbol{m} stands for a whole number greater than 10 and less than 20
\boldsymbol{n} stands for a whole number greater than 2 and less than 10
What is the smallest number that $\boldsymbol{m} \times \boldsymbol{n}$ could be?

1 mark

What is the largest number that $\boldsymbol{m} \boldsymbol{-} \boldsymbol{n}$ could be?

1 mark
2. $\quad k$ stands for a whole number.
$\boldsymbol{k}+\mathbf{7}$ is greater than 100
$\boldsymbol{k}-\mathbf{7}$ is less than 90
Find all the numbers that \boldsymbol{k} could be.
\qquad
2 marks
3. The rule for this sequence of numbers is 'add 3 each time'.

$\begin{array}{llllll}1 & 4 & 7 & 10 & 13 & 16\end{array}$

The sequence continues in the same way.
Mary says,
'No matter how far you go there will never be a multiple of 3 in the sequence'.

Is she correct?
Circle Yes or No.
Explain how you know.
\qquad
\qquad
\qquad
4. $\quad \mathbf{p}$ and \mathbf{q} each stand for whole numbers.

$$
p+q=1000
$$

\mathbf{p} is 150 greater than \mathbf{q}.

Calculate the numbers \mathbf{p} and \mathbf{q}.

5. \boldsymbol{n} stands for a number.

Complete this table of values.

6. Z stands for number.

Match the equivalent expressions.
One has been done for you.

2 marks

