1. Here are six rectangles on a grid.

Which two rectangles fit together, without overlapping, to make a square?
\qquad and \qquad
2. Here are some nets of shapes.

For each net, put a tick (\checkmark) if it folds to make a pyramid.
Put a cross (\mathbf{X}) if it does not.

1 mark
3. Here are some shapes on a grid.

Write the letter of each shape that has one pair of parallel sides.

\qquad
4. A cube has shaded shapes on three of its faces.

Here is a net of the cube.
Draw in the two missing shaded shapes.

5. Jamie draws a triangle.

He says,
'Two of the three angles in my triangle are obtuse'.
Explain why Jamie cannot be correct.

1 mark
6. Look at these shapes.

Complete the sentences below.
One has been done for you.
\qquad A \qquad is a kite
is not a quadrilateral
\qquad has only 2 right angles
............................... has 2 acute angles
7. Here are four triangles on a square grid.

A						C		D		

Write the letters of the two isosceles triangles.
\qquad and
8. Here is a sketch of a triangle.

It is not drawn to scale.

Draw the full-size triangle accurately below.
Use a protractor (angle measurer) and a ruler.
One line has been drawn for you.

9. Put ticks (\checkmark) and crosses (\boldsymbol{X}) on the chart to complete it correctly.

One has been done for you.

Shape	It is a quadrilateral	It has one or more right angles
	x	\checkmark

10. $\mathbf{A}, \mathbf{B}, \mathbf{C}$ and \mathbf{D} are the vertices of a rectangle.
\mathbf{A} and \mathbf{B} are shown on the grid.

D is the point (3,4)
Write the coordinates of point C.

11. Here is a cube.

The cube is shaded all the way round so that the top half is grey and the bottom half is white.

Here is the net of the cube.
Complete the shading

12. Four large circles and five small circles fit exactly inside this rectangle.

Not actual size
The diameter of a large circle is $\mathbf{1 7 . 5}$ centimetres.
Calculate the diameter of a small circle.

13. Here are four diagrams.

On each one put a tick () if it is a net of a cube. Put a cross (\mathbf{X}) if it is not.

14. Here are four statements.

Put a cross (\mathbf{X}) if it is impossible.

A triangle can have 2 acute angles. \square
A triangle can have 2 obtuse angles. \square

A triangle can have 2 parallel sides. \square

A triangle can have 2 perpendicular sides. \square
15. Here are seven shapes.

Write the letters of the two shapes which are pentagons.
\qquad and
16. Here is a regular hexagon.

Join three of the dots to make an equilateral triangle.
Use a ruler.

Here is a regular octagon.
Join three of the dots to make an isosceles triangle.
Use a ruler.

17. These diagrams show the diagonals of three quadrilaterals.

Write the names of the quadrilaterals in the boxes.

18. An isosceles triangle has a perimeter of 12 cm .

One of its sides is 5 cm .
What could the length of each of the other two sides be?
Two different answers are possible.
Give both answers.

2 marks
19. Here is the net of a cube with no top.

The shaded square shows the bottom of the cube.
Draw an extra square to make the net of a cube which does have a top.

1 mark
20. Draw two straight lines from point \mathbf{A} to divide the shaded shape into a square and two triangles.

21. The shaded shape is a parallelogram.

Write in the coordinates of point \mathbf{A}.

1 mark
22. Look at this diagram.

Calculate the size of angle \boldsymbol{x} and angle \boldsymbol{y}.
Do not use a protractor (angle measurer).

1 mark
\square
1 mark
23. On the grid join dots to make a triangle which does not have a right angle.

Use a ruler.

1 mark
24. Here are four triangles drawn on a square grid.

Write the letter for each triangle in the correct region of the sorting diagram.
One has been done for you.

2 marks
25. A cube has shaded triangles on three of its faces.

Here is the net of the cube.
Draw in the two missing shaded triangles.

1 mark
26. Draw two more straight lines to make a rectangle.

Use a ruler.

27. Triangle $\mathbf{A B C}$ is isosceles and has a perimeter of 20 centimetres.

Sides $\mathbf{A B}$ and $\mathbf{A C}$ are each twice as long as $\mathbf{B C}$.

Calculate the length of the side BC.
Do not use a ruler.

28. This is a centimetre grid.

Draw $\mathbf{3}$ more lines to make a parallelogram with an area of $\mathbf{1 0} \mathrm{cm}^{\mathbf{2}}$
Use a ruler.

1 mark
29. Shade one third of this shape.

Shade one quarter of this shape.

1 mark
30. Here are five shapes on a square grid.

Which two shapes fit together to make a square?
\qquad
31. These two shaded triangles are each inside a regular hexagon.

Under each hexagon, put a ring around the correct name of the shaded triangle.

equilateral isosceles
scalene

equilateral isosceles scalene
32. Lauren has three small equilateral triangles and one large equilateral triangle.

The small triangles have sides of 7 centimetres.
Lauren makes this shape.

Not actual size

Calculate the perimeter of the shape.
Do not use a ruler.

1 mark
33. Here is an equilateral triangle inside a rectangle.

Not to scale

Calculate the value of angle \boldsymbol{x}.
Do not use a protractor (angle measurer).

34. Liam has two rectangular tiles like this.

He makes this L shape.

What is the perimeter of Liam's L shape?

35. The shaded triangle is a reflection of the white triangle in the mirror line.

Write the co-ordinates of point A and point B.
\mathbf{A} is $\mathbf{(}, \quad)$
B is $(, \quad)$

2 marks
36. On the grid, draw a rectangle which has the same area as this shaded pentagon. Use a ruler.

37. Look at each of these diagrams.

Put a cross (\mathbf{x}) if it is not.

38. Here is a shape on a square grid.

For each sentence, put a tick () if it is true.
Put a cross (\mathbf{x}) if it is not true.

Angle C is an obtuse angle.
Angle \mathbf{D} is an acute angle.
\square
\square

Line $A D$ is parallel to line $B C$. \square
Line $A B$ is perpendicular to line $A D$. \square
39. The line on the grid is one side of a square.

On the grid, draw the other three sides of the square.
Use a ruler.

1 mark
40. Here are five shapes on a square grid.

Write in the missing letters.
Shape \square has two pairs of parallel sides.
41. Here are six triangles. One of them is an equilateral triangle.

Put a tick $(\sqrt{ })$ in the equilateral triangle.

1 mark

Write one property which makes equilateral triangles different from all other triangles.
\qquad
\qquad
\qquad
42. The shaded shape is an isosceles triangle.

Write in the missing co-ordinate.

1 mark
43. This board has six holes cut in it.

Here is a shape cut out of card.

Which hole will the shape fit exactly into?
You may use tracing paper.

1 mark
44. Here are some shapes.

Write the letters \mathbf{B} and \mathbf{C} in the sorting diagram below to show where shapes \mathbf{B} and \mathbf{C} should go.

Shape \mathbf{A} is done for you.

shapes	no sides equal	only 2 sides equal	more than 2 sides equal
3 sides		A	
more than 3 sides			

45. On the grid below, use a ruler to draw a pentagon that has three right angles.

46. Here are 7 shapes.

How many of the shapes are octagons?

1 mark

Which two shapes are hexagons?

1 mark
47. This ring is made of regular pentagons, with sides of $\mathbf{5}$ centimetres.

What is the length of the outer edge of the ring?

1 mark

Here is part of a new ring.
It is made of squares and triangles.

The pattern is continued to complete the ring.
What is the total number of squares used in the complete ring?

1 mark
48. This plan of a garden is made of rectangles and triangles.

The area of each rectangle is $\mathbf{1 2}$ square metres.
What is the area of the whole garden?

1 mark

The perimeter of the garden is $\mathbf{3 4}$ metres.

What is the length of the longest side of each triangle?

2 marks

