

General Certificate of Secondary Education 2012

Science: Physics

Paper 2 Higher Tier

[G7605]

MONDAY 25 JUNE, AFTERNOON

MARK SCHEME

Subject-specific instructions

1 In numerical problems, the marks for intermediate steps shown in the mark scheme are for the benefit of candidates who do not obtain the correct final answer. A correct answer and unit, if obtained from a valid starting-point, gets full credit, even if all the intermediate steps are not shown. It is not necessary to quote units for intermediate numerical quantities.

Note that this "correct answer" rule does not apply to formal proofs and derivations, which must be valid in all the stages shown in the mark scheme to obtain full credit.

2 Do not reward wrong physics. No credit is given for substitution of numerical data, or subsequent arithmetic, in a physically incorrect equation.

However, answers to later parts of questions that are consistent with an earlier incorrect numerical answer, and are based on a physically correct equation, must gain full credit. Annotate this by writing **ECF** (Error Carried Forward) by your text marks.

3 The normal penalty for an arithmetical and/or unit error is to lose the mark(s) for the answer/unit line. Substitution errors lose both the substitution and answer mark, but 10^n errors (e.g. writing 550 nm as 550×10^{-6} m) count only as arithmetical slips and lose the answer/unit mark.

1 (a) (i)	Largest = 16 N [1] both arrows in same direction [1] Smallest force = 4 N [1] Ignore signs. Insist on 2 arrows arrows in opposite direction [1]	[4]	AVAILABL MARKS
	(ii)	Object accelerating or decelerating or change in speed/velocity or moves [1] change of direction/topples change of shape [1]		
		Any two	[2]	
(b) (i)	Time (to fall) or distance (between the gates) Time to reach ground [0], time to pass through gates [0]	[1]	
	(ii)	The answer here must be consistent with the answer to (b)(i) If time then $v = u + at$ If distance then $v^2 = u^2 + 2as$ $\begin{cases} Give [1] & if answer to (b)(i) wrong the velocity of t$	[2]	
(c) (i)	(Uniform) acceleration for 5 secs [1] or velocity increases Constant speed (velocity) for next 10 secs [1] (Uniform) deceleration for next 5 secs [1] or decelerates At rest for 5 secs or speed/vel = 0 [1] constant speed [0] Deduct $[\frac{1}{2}]$ for each missing time, round down	[4]	
	(ii)	Height = area between graph and time axis (or shaded) [1] $\frac{1}{2} \times 5 \times 4 + 10 \times 4 + \frac{1}{2} \times 5 \times 4$ [3] [1] [1] [1] [1] = 60 (m) [1] or $\frac{1}{2} (20 + 10) \times 4 = 60 (m)$ [3] [1]	[5]	
	(iii)	Average velocity = $60/20$ [1] allow ecf for distance = 3 (m/s) no ecf for time		
		$\frac{\text{total displacement}}{\text{time}} [1] \text{ if no further working shown}$	[2]	
	(iv)	up down Positive – ascending Negative – descending or travelling in opposite directions or change of direction velocity is a vector or is now moving down	[1]	
	(v)	Deceleration = velocity change/time taken [1] = $20/1$ [2] = 20 [1]	[7]	
		m/s [1] Ignore minus sign	[2]	
	(vi)	Momentum = mass × velocity [1] mass × speed [0] [1] [1] = 2500×20 [2]		
		$= 50\ 000\ (\text{kg m/s})\ [1]$	[4]	30

2	(a)	(i)	Unlimited supply/suitable alternative/never runs out/replaced in a lifetime but exclude can be used over again accept sustainable	[1]	AVAILABLE MARKS
		(ii)	It uses electricity [1] which is not a renewable energy resource [1] or reference to use of fossil/non-renewable [2]	[2]	
		(iii)	PE = mgh[1]		
			$= 1 \times 10 \times 70 [2] $ [2] or [0] Formula mark only given = 700 (J) [1] if second line is correct	[4]	
		(iv)	Converted to heat or sound – or non-useful forms Changed other forms	[1]	
		(v)	KE= 595 or $\frac{1}{2}$ mv ² = 595 [1] or $\frac{85}{100} \times 700$ $\frac{1}{2}1$ v ² = 595 [2] or = $\frac{85}{100} \times 700$ v ² = 1190 [1] 100% v = 37.4 \leftarrow [3] if 100% of energy used v = 34.5 (m/s) [1] v = 31.8 \leftarrow [3] if 85% of v taken allow ecf for PE from (iii) CREDIT	[5]	
		(vi)	Efficiency = (useful) energy output/(total) energy input [1] $\frac{\text{output}}{\text{input}} = [0] \frac{\text{out}}{\text{in}} = [0] \frac{\text{E}_{\text{OUT}}}{\text{E}_{\text{IN}}} [1]$ $= 500/700 [1]$ $= 0.71 (71\%) [1] \text{Accept } 0.7 - 0.71$ Allow e.c.f. from (iii) provided the answer does not give an		
			efficiency >1 max. [1] (eqn)	[3]	
		(vii)	The demand for extra electricity can be met very quickly It is faster than fossil or fossil slower	[1]	
	(b)	(i)	It should bend upward/towards contact move up [0]	[1]	
		(ii)	The metal with greater (rate of) expansion should be further from the contacts or on the bottom outside [0] inside [0]	[1]	

(c) (i) Heat is conducted (from the processor) by the metal [1] Air is heated by convection [1] Heat is also radiated (from the structure) [1]

AVAILABLE MARKS

25

[3]

[2]

Quality of written communication

		Response	Mark	
		Candidates describe in detail using good spelling, punctuation and grammar the main points shown above. The form and style is of a high standard and specialist terms are used appropriately at all times.		
		Candidates make some reference to the main points shown above using satisfactory spelling, punctuation and grammar. The form and style is of a satisfactory standard and they have made some reference to specialist terms.	[1]	
		Response not worthy of credit.	[0]	
		2 out of 3 gets [2] for QWC conduction, convection, radiation [1] and award [1] for QWC		
	(ii)	Black is the best emitter of (radiant) heat absorber and emitter give [1]		[1]
(a)	Luminous give out their own light [1] Non-luminous reflect light, do not emit light or are seen by reflected light [1] [2]			
(b)	(i)	Extended/large		[1]
	(ii)	Circular/round/same as object/ball		[1]
	(iii)	 ii) Ray from top of source glancing bottom of ball [1] must be extended Ray from bottom of source glancing top of ball [1] towards screen [2] poorly drawn rays penalty [-1] 		
	(iv)	Region of partial shadow identified – correct rays needed credit here	ed before	[1]
	(v)	Using larger screen – no change [1] more than 1 tick Moving screen away from ball – size increases [1] Moving light source away from ball – size decreases [1]	per row [0]	[3]
(c)	(i)	circular Waves curved (in correct sense) [1] Wavelength unchanged (judge by eye) [1] or stated		[2]
	(ii)	Diffraction/or diffraction only	/	[1]

3

(d)	(i)	When angle of incidence (in water) is 49° angle of refraction (in the air) is 90°	9° or at this angle of incidence or light emerges along boundary or perpendicular to boundary			AVAILABLE MARKS
		or When the angle of incidence (in water) is total internal reflection occurs	greater than	49°	[1]	
	(ii)	Refracted ray on correct side of normal, al and weak reflected ray [1] judge by eye	long boundar	ry [1]	[2]	
	(iii)	Total internal reflection at the boundary [1 Angle of incidence = angle of reflection (j Any ray in the air give [0]] udge by eye))[1]	[2]	
	(iv)	Endoscope or keyhole surgery/looking dir into the body [1] Takes light in and brings image out [1] Fibre transmits light by total internal refle Flexible/small/thin/bendy	rectly/any-os ction [1] or T	copy TIR	[2]	
		Quality of written communication			[3]	
		Response		Mark		
		Candidates describe in detail using good punctuation and grammar the main points above. The form and style is of a high sta specialist terms are used appropriately at	spelling, s shown indard and all times.	1		
		Response not worthy of credit.		0		
(e)	(i)	Ray from top of object parallel to Pr axis r top of image or ray reverse from image [1 Pr focus marked where ray cuts Pr axis wi	refracted to] th an F [1]		[2]	
	(ii)	Focal length = 2.0 ± 0.2 (cm) or consistent	t with their r	ay diagram	[1]	25

4 (a) (i) N pole at the right end

	(ii)	One straight line through core [1] Two loops, one above one below from one end to the other [1] Direction from the right end to the left end [1] one arrow Conflicting arrows no credit for direction Any three lines Consistent with their N pole Crossing line, [-1]	
	(iii)	A (Core) (electromagnet) energised (when current flows/switch) closed [1] strengthens the magnet/becomes an electromagnet/ attracts B	
		 B (Armature) attracted to electromagnet [1] moves towards electromagnet/causes hammer to strike gong C (Spring flexible conductor) to return armature to starting 	
		D Contact opens or closes or to make or break the circuit [1]	[4]
(b)	(i)	BC – No None or blank [1] CD – Yes Up [1] both needed	[2]
	(ii)	(Electric) motor/generator/moving coil meter/dynamo	[1]
(c)	Top Bott	leftDC [1]Top rightAC [1]om leftDC [1]Bottom rightAC [1]	[4]
(d)	(i)	Two coils around the core [1] coils must have 2 ends One with more turns than the other [1] Input connected to fewer turns [1] Output connected to greater turns [1] Battery connected [-1] Two coils joined give [0]	[4]
	(ii)	Iron [1] To increase the strength of the magnetic field [1] – temporary magnetism To transfer the magnetic field easily magnetised and demagnetised or magnetically soft soft iron [-1]	[2]
	(iii)	Changing current/magnetic field (in one coil) [1] induces/produces/makes a current or voltage in the other coil [1]	[2]
	(iv)	Step up at the power station end [1] Step down at the consumer end [1]	[2]

AVAILABLE MARKS

25

[1]

5	(a)	(i)	Gravity	[1]	AVAILABLE MARKS
		(ii)	Milky Way	[1]	
		(iii)	The distance from Earth to centre of galaxy or distance travelled by light in 27000 years	[1]	
		(iv)	Universe/Space is expanding or galaxies are moving apart Universe had a definite start	[1]	
		(v)	(Light from these galaxies is) red shifted Doppler [0]	[1]	
	(b)	(i)	Heliocentric – planets orbit the sun/Sun at the centre (of the solar system) [1] universe [0] Geocentric – Earth at the centre (of the solar system) [1]	[2]	
		(ii)	The retrograde motion of the planets – looping of the planets Strange motion [0]	[1]	
		(iii)	The Church/The Pope/Religion/Christian	[1]	
	(c)	Corr 3 in 1 in	rect order 3 6 2 the correct order give [2] the correct position give [1]	[2]	
	(d)	(i)	In the summer more energy per square metre falls on the Earth or the reverse in the winter [1] or longer time in sky or high in the sky [1] $\begin{bmatrix} N. Hemisphere tilt towards the sun [1] so longer time in sky [1] or more energy/m2[1] higher in the sky [1]$	[2]	
		(ii)	Axis tilted to NE to SW	[1]	
		(iii)	B Spring D Autumn both needed	[1]	
		(iv)	9 months/270 days/ $\frac{3}{4}$ year	[1]	
		(v)	Left hand half shaded accept curved terminator	[1]	
		(vi)	В	[1]	
	(e)	Incr Gra	easing gravitational force [1] vitational force increases as distance decreases [1]	[2]	20
				Total	125
				-	