January 2013

FOUNDATION TIER

Question			Answer / Explanatory Notes	Marks Available 3
1.	(a)		Correct lines $3 \times(1)-(-1)$ for additional lines	
	(b)		$\text { Acceleration }=\frac{30}{6}(1-\text { substitution })=5\left[\mathrm{~m} / \mathrm{s}^{2}\right](1)$ For $\frac{30}{6}=0.2$ award 1 mark (the substitution mark)	2
	(c)		Slows down (accept falls slower) (1)because air resistance increases/becomes more than weight (1) Don't accept slow increase in air resistance. Forces mark (1) e.g. increased surface area against air [particles] Motion mark (1) e.g. air resistance increases (1) parachute goes up (0) - N.B. independent marking points.	2
			Question total	[7]
2.	(a) (b) (c)	(i) (ii) (i) (ii)	Plots $\pm 1 / 2$ square (2) [-1 per error] Joined point to point (1) ecf for incorrect plots If line is correct assume points are correct even if they can't be seen. Ignore thickness of line but do not accept disjointed / whispy / double / curves Use of 200 m from graph (1) $\begin{equation*} \text { Speed }=\frac{200}{40}(1-\text { subst })=5[\mathrm{~m} / \mathrm{s}] \tag{1} \end{equation*}$ Correct working of gradient (matching points) $=3$ marks e.g. $\frac{100}{20}=5$ 60 [s] ecf from graph Faster speed in the last 40 seconds or $5 \mathrm{~m} / \mathrm{s}$ compared with $10 \mathrm{~m} / \mathrm{s}$ Steeper line / has a larger gradient / same time [interval] but travelled further or $5 \mathrm{~m} / \mathrm{s}$ compared with $10 \mathrm{~m} / \mathrm{s}$	3 3 1 1 1
			Question total	[9]

Question			Answer / Explanatory Notes	Marks Available
3.	(a) (b) (c)	(i) (ii) (iii)	$\begin{aligned} & \text { Momentum }=800 \times 12(1-\text { subst) } \\ & \quad=9600[\mathrm{~kg} \mathrm{~m} / \mathrm{s}](1) \end{aligned}$ Any 1 from: - worse weather conditions or implied - worn tyres / incorrect tyre pressure - poor brakes - worse road conditions - high speed / momentum / mass bigger NOT drink driving / tiredness References to reaction time are neutral	2
			Question total	[7]

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{Question} \& Answer / Explanatory Notes \& \begin{tabular}{l}
Marks \\
Available
\end{tabular} \\
\hline 4. \& \begin{tabular}{l}
(a) \\
(b) \\
(c) \\
(d) \\
(e)
\end{tabular} \& \[
\begin{gathered}
\hline \text { (i) } \\
\text { (ii) } \\
\text { (i) } \\
\text { (ii) } \\
\\
\text { (i) } \\
\text { (ii) } \\
\text { (iii) }
\end{gathered}
\] \& \begin{tabular}{l}
graphite / moderator \\
to cause [fission / chain] reactions / if too quick, reaction won't work \\
boron / control rods \\
to prevent an uncontrolled chain reaction / control the chain reaction / prevent overheating or meltdown / Don't accept "to stop fission" only must be qualified. \\
235 \\
36 \\
[91-36] = 55 (No ecf for 91 - (ii)) \\
\({ }_{56}^{136} \mathrm{Ba}\) circled \\
37 (1) \\
0 (1)
\end{tabular} \& \[
\begin{aligned}
\& 1 \\
\& 1 \\
\& 1 \\
\& 1 \\
\& \\
\& 1 \\
\& 1 \\
\& 1
\end{aligned}
\] \\
\hline \& \& \& Question total \& [10] \\
\hline 5. \& (a)

(b) \& \begin{tabular}{l}
(i)

(ii)

(iii)

(iv)

(v)

(i)

(ii)

 \&

2 [A]

$R=\frac{6}{2}(1-$ substitution $)=3[\Omega]$ (1) ecf from (i)

(If found for wire in (i) $R=4.8 \Omega$)

$6 \times 2(1-$ subst $)=12[W]$ (1) ecf from (i)

(If found for wire in (i) $P=7.5 \mathrm{~W}$)

11 [V]

3.25 [A]

Lamp has bigger resistance or converse argument or values given $\mathrm{W}=4.8 \Omega$ and $L=5.2 \Omega$

Smaller current through it or converse argument or calculations shown (allow temperature increase)

Question total

 \&

1

2

2

1
1

1

1

[9]
\end{tabular}

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{Question} \& Answer / Explanatory Notes \& Marks Available

\hline 6. \& (a)

(b) \& \begin{tabular}{l}
(i)

(ii)

(iii)

(i)

(ii)

 \&

Helium nucleus/nuclei / 2 protons and 2 neutrons (accept 2p and 2n) Gamma more penetrating [than alpha] / so would not be blocked by smoke / wouldn't change the current / weakly ionising. Any $2 \times$ (1) due to all points being interlinked.

Or gamma is more weakly ionising (1) so doesn't cause an electric current (1) (Don't accept gamma is not ionising.)

Distance between detector / ceiling and the human body (1) so / hence alpha is easily absorbed by the air / case (1)

(Answer must be relevant to this context so don't accept alpha will be blocked by skin / paper.)

Longer $1 / 2$-life (1) (don't accept longer to decay)

so detector stays active / works longer or doesn't need replacing [as often] (1)

I. becquerel [accept [Becquerel!] / Bq / bq

II. 26000 is half of 52000 (1 - method)

so time is one $1 / 2$-life $=\underline{432}$ [years] (1)

(Accept $\frac{52000}{2}$ as recognition of half-life - don't allow any other value

divided by 2).

III. $\frac{864}{432}=2$ or 864 years is $21 / 2$-lives or implied (1)

so $1 / 4$ of the mass remains $=\underline{0.1}[\mu \mathrm{~g}](1)$

 \&

1

2

2

2

1

2

2
\end{tabular}

\hline \& \& \& Question total \& [12]

\hline
\end{tabular}

| Question | | Answer / Explanatory Notes | Marks
 Available |
| :--- | :--- | :--- | :--- | :--- |
| 7. | Indicative content:
 The advantage is that the time taken for the given journey is reduced from 4h to
 3.5h with the increase in speed.
 The disadvantage is that in the event of an emergency stop being necessary, the
 total stopping distance is increased from 96 m to 121.5m, increasing risk of
 serious injury or death. Relevant factors clearly explained, e.g. tiredness, related
 to time or speed / separation from vehicle in front. Increased momentum at
 higher speed related to increased force on vehicle and occupants in the event of a
 collision.
 $5-6$ marksThe candidate constructs an articulate, integrated account correctly
 linking relevant points, such as those in the indicative content,
 which shows sequential reasoning. The answer fully addresses the
 question with no irrelevant inclusions or significant omissions. The
 candidate uses appropriate scientific terminology and accurate
 spelling, punctuation and grammar.
 3-4 marksThe candidate constructs an account correctly linking some relevant
 points, such as those in the indicative content, showing some
 reasoning. The answer addresses the question with some omissions.
 The candidate uses mainly appropriate scientific terminology and
 some accurate spelling, punctuation and grammar.
 [6] | | |

