January 2014

FOUNDATION TIER

Question			Marking details	Marks
1.	(a) (b) (c)	(i) (ii) (i) (ii)	Second box ticked Second box ticked Arrow pointing up (can be anywhere) $\begin{aligned} & 20-5=\underline{15}[\mathrm{~N}] \\ & \frac{15(\mathrm{ecf})}{0.5}(1)=30\left[\mathrm{~m} / \mathrm{s}^{2}\right] \end{aligned}$ Question total	1 1 1 2 [6]
2.			slow neutrons (1) fission (1) moderator (1) neutrons (1) control rods (1) Question total	5 [5]
3.	(a)	(i) (ii) (iii) (iv)	D C C D $50 \times 70(1-$ substitution $)=3500[\mathrm{~kg} \mathrm{~m} / \mathrm{s}](1)$ ALTERNATIVE: $55 \times 70=3850$ and $5 \times 70=350$ (1) $3500[\mathrm{~kg} \mathrm{~m} / \mathrm{s}]$ (1) Question total	4 2 [6]

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|r|}{Question} \& Marking details \& Marks

\hline 4. \& (a)
(b)

(c) \& \begin{tabular}{l}
(i)

(ii)

(iii)

(i)

(ii)

 \&

$$
\begin{aligned}
& \frac{4}{2}(1)=2[\Omega](1) \\
& 2 \times 4(1)=8[\mathrm{~W}](1) \\
& 2[\mathrm{~A}]
\end{aligned}
$$

Decreases (1) stays the same (1)

Increase

Bulbs can be switched separately / don't go out if one breaks (1) bulbs stay bright [when more added] / same voltage / current doesn't decrease or resistance doesn't increase (1)

OR converse arguments about series circuits

 \&

2

2

1

2

1

2

[10]
\end{tabular}

\hline 5. \& (a)
(b)

(c) \& \begin{tabular}{l}
(i)

(ii)

(iii)

(i)

(ii)

(iii)

 \&

Braking [distance]

[Thinking distance] increases with speed (1) in proportion / in a linear manner / uniformly (1)

Increase it (no reference to time)

Steeper line shown through the origin (accept a curve provided always above the given line)

$13[\mathrm{~m} / \mathrm{s}]$

8 [s] accept 6.8 [s]

B (1) because time is shortest / area under graph smallest / biggest deceleration / steepest line (accept steeper than others) / biggest gradient / stops in only 5 s (1)

Neutral - longest or shortest gradient

Don't accept - stops at 5 s or steeper rate

 \&

$$
1
$$

2

1

1

1

1

2
\end{tabular}

\hline \& \& \& \& [9]

\hline
\end{tabular}

