HIGHER TIER

Question			Marking details	Mark
1.	(a)	(i)(ii)	The time/how long it takes/it takes 6000 years for half of the undecayed atoms/mass/amount/activity/count rate to fall by half.	1
			The nucleus emits/loses (1) an electron (1) OR identifies the nucleus (1) in which neutron splits into proton and electron (1) Either mark can be awarded on its own but only award 2 marks if they are linked.	2
	(b)	(i)	plots correct (2) [lose 1 for each incorrect plot allow $\pm 1 / 2$ small square division up to a maximum of 2 marks] reasonable curve through the points (1)	3
		(ii) (iii)	Value to be taken from candidate's graph ± 10 [About 130]. Credit an answer of between 120-140 when no line is drawn. $10 \text { (1) } \underline{\mathbf{x} 6000(1)=[60000 \text { years }] ~}$	2
	(c)	(i)	7400 years (value to be taken from candidate's graph)(1)	1
		(ii)	reduce activities from the graph by a factor of 10 (1), line from 320 on graph to find time (1) or converse, (or reference to) lines drawn on graph at 320 (and down to the time axis). Alternative - for an extended graph and lines drawn at 80 (1) and " 32 " drawn on an extended line (1), award both marks for method either explained or drawn. N.B. No marks can be awarded for the age because of the uncertainty in this method.	2
			Question total	[12]

Question			Marking details	Mark
3.	(a)		Object continues in its state of rest/inertia/motion/constant speed [in a straight line] (1) unless acted upon by an [external/unbalanced] force (1)	2
	(b)	(i)	2250×8 (1 for substitution) $=18000[\mathrm{~kg} \mathrm{~m} / \mathrm{s}](1)$ [Answer mark must be number on answer line]	2
		(ii)	$\begin{aligned} & \text { (1 for subs + manip) } \frac{18000}{900}=20 \text { (allow ecf from (i)) } \\ & \text { final velocity }=20(\text { ecf })+5=25[\mathrm{~m} / \mathrm{s}](1) \\ & \text { OR Final momentum }=4500+18000=22500(1) v=25[\mathrm{~m} / \mathrm{s}](1) \\ & \text { OR Momentum ratio }=\text { velocity ratio e.g. } 18000: 4500=4 \text { so arrive } \\ & \text { at a [change in] velocity of } 20[\mathrm{~m} / \mathrm{s}](1) v=25[\mathrm{~m} / \mathrm{s}] \text { (1) } \end{aligned}$	2
			Question total	[6]
4.	(a)	(i)	By using a moderator / graphite / water. Accept graphite rods / graphite monitor. BUT moderator + control rods (0) graphite and boron (0).	1
		(ii)	${ }_{94}^{239} \mathrm{Pu}+{ }_{0}^{1} \mathrm{n} \rightarrow{ }_{39}^{89} \mathrm{Y}+{ }_{55}^{148} \mathrm{Cs}+3{ }_{0}^{1} \mathrm{n}$ LHS: Correct symbol for a neutron ${ }_{0}^{1} \mathrm{n}$ NOT N (1), correct nuclear symbol for plutonium ${ }_{94}^{239} \mathrm{Pu}(1)$, RHS: correct nuclear symbols for Yttrium ${ }_{39}^{89} \mathrm{Y}$ and Caesium ${ }_{55}^{148} \mathrm{Cs}$ (1), 3 neutrons $3{ }_{0}^{1} \mathrm{n}$ (1). Accept Y_{39}^{89} Accept $\underline{3}^{1} \mathrm{~N}$ or $\underline{3} \mathrm{n}$	4
	(b)		Same/equal number (accept amount) of protons/atomic number/ $\mathbf{5 5}$ protons (1) different number (accept amount) of neutrons/mass number/nucleon number (1) Electrons are not awarded but regard as neutral. HOWEVER 'same number of electrons in neutral atoms' (1).	2
			Question total	[7]
5.	(a)		Subs+manip 40/230 (1) $I=0.17[4][\mathrm{A}]$ (1)	2
			[Do not accept 0.173 but accept 0.2] 118	
	(b)	(i)	Subs + manip $I^{2}=\frac{118}{82}(1)=1.44(1), I=1.2$ [A] (1) If 1.44 on the answer line then award 2 marks. If 1.43 used, no penalty for rounding I will $=1.19[\mathrm{~A}]$ N.B. $\sqrt{ } 1.4=1.18$	3
		(ii)	$\text { current through each lamp }=\frac{1.2(e c f)}{12}=0.1[\mathrm{~A}](1)$	
			Either pd across dimmer $=1.2 \times 82=98[.4]$ (1) pd across lamps $=230-98.4$ ecf $=131.6($ accept 132 $)$	
			OR resistance of each lamp $=\frac{230}{0.174}=1322$ (1) ecf for 0.174	
			$\text { Power }=0.1^{2} \text { ecf } \times 1322 \text { ecf }=13.22[\mathrm{~W}](1)$	3
			Question total	[8]

