Surname	Centre Number	Candidate Number
Other Names		0

GCSE

4472/02

ADDITIONAL SCIENCE/CHEMISTRY

CHEMISTRY 2 HIGHER TIER

A.M. THURSDAY, 15 May 2014

1 hour

For Examiner's use only			
Question	Maximum Mark	Mark Awarded	
1.	5		
2.	6		
3.	7		
4.	6		
5.	4		
6.	4		
7.	7		
8.	5		
9.	5		
10.	5		
11.	6		
Total	60		

ADDITIONAL MATERIALS

In addition to this paper you will need a calculator and a ruler.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen.

Write your name, centre number and candidate number in the spaces at the top of this page.

Answer all questions.

Write your answers in the spaces provided in this booklet.

INFORMATION FOR CANDIDATES

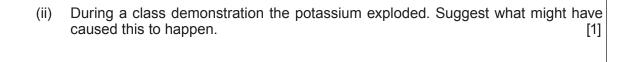
The number of marks is given in brackets at the end of each question or part-question.

You are reminded of the necessity for good English and orderly presentation in your answers.

Assessment will take into account the quality of written communication (QWC) used in your answers to questions **4** and **11**.

The Periodic Table is printed on the back cover of the examination paper and the formulae for some common ions on the inside of the back cover.

Answer all questions.


1. (a) The following processes are used in the treatment of our water supply.

	sedimentation	filtration	chlorination	
	State the purpose of each p	rocess.		[3]
	Sedimentation			
	Filtration			
	Chlorination			
(b)	Drinking water can be obtain	ned by desalination.		
	State what is meant by desa	alination and name a	a process by which it can b	e carried out. [2]

2. Potassium reacts vigorously with water.

(a)	(i)	Describe what you would observe when potassium reacts with water.	[3]

(b) Complete and balance the symbol equation for the reaction between potassium and water. [2]

3. The table below shows the amount of soap solution required by different samples of water to form a permanent lather. In each case $25\,\mathrm{cm}^3$ of the water samples were used and the soap solution was added $1\,\mathrm{cm}^3$ at a time.

	Volume of soap solution added (cm ³)				
Sample	Test 1	Test 2	Test 3	Test 4	Mean
distilled water	2	2	2	2	2
Α	8	8	9	7	8
В	11	18	12	13	
С	15	14	14	13	14
A after boiling	8	7	9	8	8
B after boiling	6	5	6	7	6
C after boiling	2	2	2	2	2

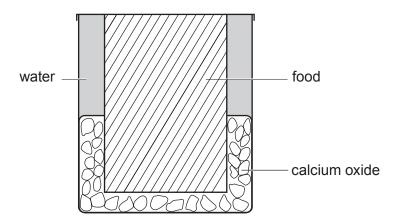
(a)	Two pupils, David and Haf, calculated the mean value for sample B . David calcul value of 13.5 and Haf calculated a value of 12. Show how both values were obtate which is the better value to use and give a reason for your choice.	
•••••		
(b)	State which of water samples A , B and C is the least hard. Water sample	[1]
(c)	State which of water samples A , B and C contains both temporary and pern hardness. Give the reason for you answer. Water sample	nanent [2]
	Reason	
(d)	Name an ion which causes hardness in water.	[1]

State and explain what information this gives you about element E .					
You may wish to refer to the key on the Periodic Table to help you answer this question. [6 QWC]					

4472 020005

5.	(a)	One of the main dangers in the coal mining industry is that coal dust can form an explosive mixture with air.	
		Explain why an explosion is more likely to occur with coal dust than with lumps of coal. [2]	
	•····		
	(b)	A chemical reaction goes twice as fast if the temperature is increased by 10 °C.	
		At 5 °C, milk undergoes a chemical reaction that makes it go sour in 8 days.	
		Calculate how long it will take milk to go sour at 35 °C. [2]	
	•••••		
	•••••		

BLANK PAGE


6. (a) 'Hot cans' are designed to heat the food inside them when it is to be eaten. The heat is generated by mixing calcium oxide with water.

Source: Amazon

The following diagram shows the cross-section of a 'hot can'.

During a trial reaction, the temperature reached $50\,^{\circ}\text{C}$ but a temperature of $70\,^{\circ}\text{C}$ is required to properly heat the food.

Suggest a change that could have been made and explain how this would lead reaching the higher temperature.	I to the can [2]

(4472-02)
TopLevels.co.uk

© WJEC CBAC Ltd.

(b)	When chemical reactions take place bonds are broken and new bonds are formed.	
	Explain, in terms of bond making and breaking, why some reactions are exothermic .	[2]
•••••		

Turn over.

(a)	Sod	ium reacts with	oxygen to give s	odium oxide.	
	(i)	Using the electransfer of electrons	ctronic structures ctrons and the fo	s below, draw dot and cross or rmation of ions that occur as so	liagrams to show the dium oxide is formed. [3]
			sodium 2,8,1	oxygen 2,6	
	(ii)	Give the elect	ronic structure	of the sodium and oxide ions.	[1]
				Electronic structure	
		sod	ium ion		
			de ion		
(b)	Nam low	oxi	de ion	t in ammonia, NH ₃ , and explair	n why ammonia has a [3]
(b)	Nam low	oxi	de ion	t in ammonia, NH ₃ , and explair	n why ammonia has a [3]
(b)	Nam low	oxi	de ion	t in ammonia, NH ₃ , and explair	n why ammonia has a [3]
(b)	Nam low	oxi	de ion	t in ammonia, NH ₃ , and explair	n why ammonia has a [3]
(b)	Nam low	oxi	de ion	t in ammonia, NH ₃ , and explair	n why ammonia has a [3]
(b)	Nam low	oxi	de ion	t in ammonia, NH ₃ , and explair	n why ammonia has a [3]

8.	(a)	When bromine is passed over heated iron wool it glows and forms iron(III) bromide.	
		Write a balanced symbol equation for the reaction.	[3]
		+	
	(b)	Name the substance used to test for the presence of bromide ions in iron(III) bromi solution and give the expected result.	de [2]

9. (a) The table below shows the names, molecular formulae and the structural formulae of the first two members of the alkene series. Complete the table by giving the structural formula of butene, C_4H_8 . [1]

Name	Molecular formula	Structural formula
ethene	C ₂ H ₄	H H C==C H H
propene	C ₃ H ₆	H—C—C=C
butene	C ₄ H ₈	

(b)	Explain how polypropene is formed from propene.	[4]

• • • • • • • • • • • • • • • • • • • •		

10. Many metal ores contain sulfides. Chalcocite is an important copper ore which contains copper(I) sulfide, Cu_2S .

Copper can be obtained from the ore by heating in air.

The equation for the reaction that takes place is as follows.

$$Cu_2S + O_2 \longrightarrow 2Cu + SO_2$$

(a) Use the above equation to calculate the mass of copper produced on reacting 20.5 tonnes of copper(I) sulfide with an excess of oxygen. [3]

$$A_{\rm r}({\rm Cu}) = 64$$
 $A_{\rm r}({\rm S}) = 32$

Mass of copper = tonnes

(b) When the extraction was carried out with 20.5 tonnes of chalcocite only 12.3 tonnes of copper was formed.

Calculate the percentage of **impurity** present in the ore.

[2]

Percentage of impurity = %

Examiner only

11.	 Describe how reactions involving chlorine, bromine and iodine can be used to show the trend reactivity in Group 7 elements. 									
	You should include equations in your answer.									

END OF PAPER

FORMULAE FOR SOME COMMON IONS

POSITIV	E IONS	NEGATIVE IONS						
Name	Formula	Name	Formula					
Aluminium	Al ³⁺	Bromide	Br ⁻					
Ammonium	NH ₄ ⁺	Carbonate	CO ₃ ²⁻					
Barium	Ba ²⁺	Chloride	CI ⁻					
Calcium	Ca ²⁺	Fluoride	F ⁻					
Copper(II)	Cu ²⁺	Hydroxide	OH ⁻					
Hydrogen	H⁺	lodide	I ⁻ NO ₃ ⁻					
Iron(II)	Fe ²⁺	Nitrate						
Iron(III)	Fe ³⁺	Oxide	O^{2-}					
Lithium	Li ⁺	Sulfate	SO ₄ ²⁻					
Magnesium	Mg ²⁺							
Nickel	Ni ²⁺							
Potassium	K ⁺							
Silver	Ag^{+}							
Sodium	Na ⁺							
Zinc	Zn ²⁺							

PERIODIC TABLE OF ELEMENTS

0	⁴ He	Helium	²⁰ Ne	Neon	40 Ar	Argon	84 Kr 36 Kr	Krypton	¹³¹ Xe	Xenon	²²² Rn	Radon			
_	4.4	I	19 F 2	Fluorine	35 CI 4	Chlorine A	80 Br 8	Bromine K	127 13 53 E	X	210 At 22 85 At 8	Astatine R			
_															
9			16 8	Oxygen	32 S	Sulfur	79 Se	Selenium	128 Te	Tellurium	²¹⁰ Po	Polonium			
2			N 41 7	Nitrogen	31 P	Phosphorus	75 AS	Arsenic	122 Sb	Antimony	209 Bi	Bismuth			
4			12 C	Carbon	28 Si	Silicon	73 Ge	Germanium	119 Sn 50 Sn	Tin	²⁰⁷ Pb	Lead			
က			11 B	Boron	27 AI	Aluminium	70 Ga	Gallium	115 In 49	Indium	204 TI	Thallium			lod
							65 Zn	Zinc	112 Cd 48 Cd	Cadmium	201 Hg	Mercury			Element Symbol
							64 Cu	Copper	108 Ag	Silver	197 79 Au	Gold			– Elemé
							59 Ni	Nickel	106 Pd 46 Pd	Palladium	195 Pt	Platinum			A X K
	Ŧ	Hydrogen					⁵⁹ Co	Cobalt	103 Rh	Rhodium	192 r 77	Iridium			✓ N N S S S S S S S S S S S S S S S S S
Group							56 Fe	Iron	101 Ru 44 Ru	Ruthenium	190 OS 76	Osmium			er —
Gro							55 Mn	Manganese	99 TC	Technetium	¹⁸⁶ Re	Rhenium			Mass number Atomic number
							52 Cr	Chromium	⁹⁶ Mo	Molybdenum	184 W	Tungsten		Key:	Mass
							51 V 23	Vanadium	93 Nb	Niobium	181 Ta	Tantalum			
							48 Ti	Titanium	⁹¹ Zr	Zirconium	179 Hf	Hafnium			
							45 SC	Scandium	₹ 68 €	Yttrium	139 La 57 La	Lanthanum	227 AC	Actinium	
8			⁹ ₄ Be	Beryllium	24 Mg	Magnesium	40 Ca	Calcium	88 88 88	Strontium	137 Ba	Barium	226 Ra 88	Radium	
~			7 Li	Lithium	23 Na	Sodium	39 X	Potassium	86 Rb	Rubidium	133 Cs 55	Caesium	223 Fr 87	Francium	
															ı

© WJEC CBAC Ltd.

(4472-02)