PHYSICS 3 Summer 2015

Higher Tier

Question Number				
FT	HT	Sub-section	Mark	Answer
	3		6	Indicative content: Conduction in solids occurs because the atoms are regularly positioned and are close together. The atoms in the hot part of the solid vibrate faster than those elsewhere. They pass on their energy to their neighbours by collisions and so the energy travels through the solid. In metals this is improved by free electrons which move at speed from the hot region, colliding with metal ions in the lattice, transferring their energy in the process. Convection occurs in gases because the particles in the hotter region have more energy and push each other further apart in violent collisions. This region becomes less dense and rises above the cooler region setting up a circulating current, transferring thermal energy to all parts of the gas. 5-6 marks The candidate constructs an articulate, integrated account correctly linking relevant points, such as those in the indicative content, which shows sequential reasoning. The answer fully addresses the question with no irrelevant inclusions or significant omissions. The candidate uses appropriate scientific terminology and accurate spelling, punctuation and grammar. 3-4 marks The candidate constructs an account correctly linking some relevant points, such as those in the indicative content, showing some reasoning. The answer addresses the question with some omissions. The candidate uses mainly appropriate scientific terminology and some accurate spelling, punctuation and grammar. 1-2 marks The candidate makes some relevant points, such as those in the indicative content, showing limited reasoning. The answer addresses the question with significant omissions. The candidate uses limited scientific terminology and inaccuracies in spelling, punctuation and grammar. 0 marks The candidate does not make any attempt or give a relevant answer worthy of credit.
		Total Mark	6	

Question Number					Answer			
FT	HT	Sub-section		Mark			Neutral answer	Do not accept
	4	(a)		2	Full core drawn so as to pass inside both coils and labelled IRON CORE (1) Function is to take the magnetic field [from the primary coil] into the secondary coil / linking the magnetic field of primary and secondary coils (1)	To increase the field strength through the secondary coil		A half core drawn or a single line drawn Links the two coils for the $2^{\text {nd }}$ mark
		(b)	(i)	2	As the number of turns on the input coil increases, the output voltage decreases (1) at a decreasing rate (1)	Award 1 mark for negative correlation Award 2 marks for inversely proportional	in a nonlinear way / non-uniform way / reference to the gradient
			(ii)	2	$\frac{400}{60}=\frac{2000}{N_{2}}$ (e.g. using paired values from graph) (1-subs) $N_{2}=2000 \times \frac{60}{400}=300(1-\mathrm{ans})$			
			(iii)	3	(1-for 120 from graph) $P=V I$ so $I=\frac{480}{120}$ (1-substitution) $I=4[\mathrm{~A}]$ (1-manipulation and answer)	$480=120 \times I$ gets first 2 marks Use of voltage value between 0 $-230 \mathrm{~V}$		
			(iv)	1	Line drawn to the left and always below the line that is given in the question			Any touching of the original line
		Total Mark		10				

Question Number			Mark Answer		Accept	Neutral answer	Do not accept
	Sub-section						
-	(a)		-	Speed $=\frac{1958(1)}{240(1)}=8.1583 / 8.16[\mathrm{~km} / \mathrm{s}](1)$	8.2 [km/s]		8.15 [km/s]
	(b)		6	Indicative content: Similarities: - P and S waves will both arrive at Tokyo and Hawaii. - P waves will always arrive before S waves. Differences: - Tokyo and Hawaii traces will start later than Hong Kong because they have further to travel. Tokyo calculation for arrival of P waves: Time $=\frac{4100}{8.16}$ ecf $=502.6 \mathrm{~s}(8.4 \mathrm{~min})$ [so trace starts at 2:36:24] Hawaii Calculation: Time $=\frac{11020}{8.16}$ ecf $=1351 \mathrm{~s}(22.5 \mathrm{~min})$ [so trace starts at 2:50:31] - Tokyo trace to have a greater gap (than Hong Kong trace) between P and S waves arriving. Hawaii trace to have an even longer gap between P and S waves arriving. Delay Calculations: From Hong Kong data: Speed of S wave: $\frac{1958}{485}=4.04 \mathrm{~km} / \mathrm{s}$ Tokyo time for S waves: $\frac{4100}{4.04}=1015.6[\mathrm{~s}]$ [So Tokyo lag time: $1015.6-502.6=513$ [s]] Hawaii time for S waves: $\frac{11020}{4.04}=2729$ [s] [So Hawaii lag time: $2729-1351=1378$ [s]] Amplitude at Tokyo less than Hong Kong and less still at Hawaii (These figures are within a range of 30 s depending on rounding off.)			

