PHYSICS 3 Summer 2015 Higher Tier

Que	stion							
FT	HT	Sub-section Mark		Sub-section Mark Answer		Accept	Neutral answer	Do not accept
	1	(a)	(i)	2	0.1 × 8 (1) 0.8 [kg m/s] (1)			
			(ii)	1	- 0.6 [kg m/s]			+0.6
			(iii)	1	Total momentum before collision = + 0.2 [kg m/s] (ecf from parts (i) &(ii) probably giving an answer of +1.4)			
			(iv)	1	Same answer as (iii)			
			(v)	2	$v_{\rm B} = \frac{0.2}{0.2}$ 2 mark for the numerator (ecf from (iv)) 1 mark for the denominator (i.e. 0.2)	If no workings shown: Award 2 marks for an answer of 1 [m/s] Award 2 marks for an answer of 7 [m/s] when ecf applied		
		(b)	(i)	2	$t = \frac{(0-8)}{-160}$ 1 mark for the numerator of (0 - 8) or (8 - 0) 1 mark for the denominator of -160 or 160 respectively	If no workings shown: Award 2 marks for an answer of 0.05 Award 1 mark for an answer of -0.05		
			(ii)	2	Force = 1.6 [N] (1) To the left / opposite [direction to force applied to B] (1)	In the negative vector / velocity direction (for second mark) Accept = -1.6 [N] for both marks Award 1 mark for: force on A is equal and opposite / same size and opposite		Force is backwards / same size
		(c)	I Mark	3	Before KE = $(\frac{1}{2} \times 0.1 \ (8^2)) + (\frac{1}{2} \times 0.2 \ (3^2)) = 3.2 + 0.9 = 4.1 \ [J] \ (1)$ After KE = $0 + (\frac{1}{2} \times 0.2 \ (1^2)) = 0.1 \ [J] \ (1)$ ecf from (a)(v) KE lost = $4.1 - 0.1 = 4.0 \ [J](1)$ N.B. ecf from (a)(v) gives KE = $0 + (\frac{1}{2} \times 0.2 \ (7^2)) = 4.9 \ [J]$ and energy loss = $-0.8 \ [J]$	Award mark for correct subtraction where energies are wrong		Final answer of 0.8 from ecf s (Award 2 max for KE calculations)
			i wan	14	1			

Num	iber							
FT	HT	Sub-	section	n Mark	Answer	Accept	Neutral answer	Do not accept
	2	(a)	(i)	1	Gravity and radiation / pressure			
			(ii)	1	Forces are balanced / they are balanced	Equal and opposite / forces cancel each other out		The same / equal / because it has a supply of hydrogen / its balanced
		(b)	(i)	1	${}^{1}_{1}H + {}^{1}_{1}H + {}^{1}_{1}H + {}^{1}_{1}H \rightarrow {}^{4}_{2}He + {}^{0}_{1}e + {}^{0}_{1}e$	$4^{1}_{1}H \rightarrow {}^{4}_{2}He + 2^{0}_{1}e$		
	-		(ii)	3	<u>Four</u> hydrogen [nuclei] / protons join / fuse (1) to form a helium [nucleus] (1) and <u>two</u> positrons (1)	Antielectron instead of positron		Positive electron / react / bond / collide / alpha particle
			(iii)	3	Mass on left hand side = $4 \times 1.00728 = 4.02912$ (1) [Mass on right hand side = 4.00151] Mass defect = $4.02912 \text{ ecf} - 4.00151$ = 0.02761 [u] (1) $E = mc^2 = 0.02761 \text{ ecf} \times 1.66 \times 10^{-27}$ = 4.58326×10^{-29} [kg] (1) $\times (3 \times 10^8)^2 = 4.12 \times 10^{-12}$ [J] (1) Alternative solution: LHS: $4 \times 1.00728 = 4.02912$ (1) $4.02912 \text{ ecf} \times 1.66 \times 10^{-27} = 6.6883392 \times 10^{-27}$ [kg] and RHS: $4.00151 \times 1.66 \times 10^{-27} = 6.6425066 \times 10^{-27}$ [kg] (1) LHS: $6.6883392 \text{ ecf} \times (3 \times 10^8)^2 = 6.01950528 \times 10^{-10}$ [J] and RHS: $6.6425066 \times (3 \times 10^8)^2 = 5.97825594 \times 10^{-10}$ [J] (1) Energy loss = $(6.01950528 - 5.97825594) \times 10^{-10}$ J $= 4.12 \times 10^{-12}$ [J] (1)			
		(c)		1	Energy / gamma is released	They annihilate / destroy each other / cancel each other out	An explosion takes place	They neutralise each other
		Tota	l Mark	11				

Question

Que Nui	estion mber			
FT	HT	Sub-section	Mark	Answer
	3		6 Indicative content: Conduction in solids occurs because the atoms are regularly positioned and are close togeth the hot part of the solid vibrate faster than those elsewhere. They pass on their energy to th collisions and so the energy travels through the solid. In metals this is improved by free elec- at speed from the hot region, colliding with metal ions in the lattice, transferring their energy Convection occurs in gases because the particles in the hotter region have more energy and further apart in violent collisions. This region becomes less dense and rises above the coole a circulating current, transferring thermal energy to all parts of the gas.	
	5-6 marks The candidate constructs an articulate, integrated account correctly linking relevant points, such as the indicative content, which shows sequential reasoning. The answer fully addresses the question with ne irrelevant inclusions or significant omissions. The candidate uses appropriate scientific terminology an accurate spelling, punctuation and grammar.			
				3-4 marks The candidate constructs an account correctly linking some relevant points, such as those in the indicative content, showing some reasoning. The answer addresses the question with some omissions. The candidate uses mainly appropriate scientific terminology and some accurate spelling, punctuation and grammar.
				1-2 marks The candidate makes some relevant points, such as those in the indicative content, showing limited reasoning. The answer addresses the question with significant omissions. The candidate uses limited scientific terminology and inaccuracies in spelling, punctuation and grammar.
		Total Mark	6	0 marks The candidate does not make any attempt or give a relevant answer worthy of credit.

Que	stion							
Nun	nber							
FT	HT	Sub-section		Sub-section Mark Answer		Accept	Neutral answer	Do not accept
	4	(a)		2	Full core drawn so as to pass inside both coils and labelled <u>IRON CORE</u> (1) Function is to take the magnetic field [from the primary coil] into the secondary coil / linking the <u>magnetic field</u> of primary and secondary coils (1)	To increase the field strength through the secondary coil		A half core drawn or a single line drawn Links the two coils for the 2 nd mark
	1	(b)	(i)	2	As the number of turns on the input coil increases, the output voltage decreases (1) at a decreasing rate (1)	Award 1 mark for negative correlation Award 2 marks for inversely proportional		in a non- linear way / non-uniform way / reference to the gradient
			(ii)	2	$\frac{400}{60} = \frac{2000}{N_2}$ (e.g. using paired values from graph) (1-subs) $N_2 = 2000 \text{ x} \frac{60}{400} = 300 (1-\text{ans})$			
			(iii)	3	(1-for 120 from graph) $P = VI$ so $I = \frac{480}{120}$ (1-substitution) I = 4 [A] (1-manipulation and answer)	$480 = 120 \times I$ gets first 2 marks Use of voltage value between 0 -230 V		
			(iv)	1	Line drawn to the left and always below the line that is given in the question			Any touching of the original line
		Tota	al Mark	10				

Que	stion							
Nun	nber			1	-	-		
FT	ΗT	Sub-section Mark		Mark	Answer	Accept	Neutral answer	Do not accept
	5	(a)	(i)	3	Scale added to temperature axis in 10 °C intervals (1) Points ± ½ small square division (1) Best fit straight line with some points either side (1)			
L			(ii)	1	Decreases			0K
			(iii)	1	[J] 0			
		(b)	Mork	4	$T_{1} = 270 \text{ K}, T_{2} = 315 \text{ K}$ $p_{1} = 3 \times 10^{6}, p_{2} = ?$ $p_{2} = p_{1} \times \frac{T_{2}}{T_{1}} = 3 \times 10^{6} \times \frac{315}{270}$ (1 - temp conversions) (1 - substitution) $p_{2} = 3.5 \times 10^{6} \text{ (1- manipulation and answer)}$ Comment which is dependent on their calculation (1) e.g. if correct answer – no danger of explosion stated	$\frac{p_1}{T_1} = \frac{p_2}{T_2}$ $\frac{3 \times 10^6}{-3} = \frac{p_2}{42}$ $p_2 = -42 \times 10^6 \text{ [Pa]}$ No danger of explosion Award: 0 for Kelvin conversion 1 for substitution of - 3 °C 1 for answer with negative sign 1 for correct comment based on their answer		
		Tota	al Mark	9				

Question										
Number	Sub section Mar									
	Suc (a)	-secti	on	Mark 3	Answer 1058(1)	Accept 8.2 [km/s]	Neutral answer	Do not accept		
0	(a)			5	Speed = $\frac{1938(1)}{240(1)}$ = 8.1583 / 8.16 [km/s] (1)	0.2 [KIII/5]		0.13 [KIII/S]		
	(b)			6	Indicative content: Similarities: P and S waves will both arrive at Tokyo and Ha P waves will always arrive before S waves. Differences: Tokyo and Hawaii traces will start later than Ho Tokyo calculation for arrival of P waves: Time = $\frac{4100}{8.16}$ ecf = 502.6 s (8.4 min) [so trace starts at Hawaii Calculation: Time = $\frac{11020}{8.16}$ ecf = 1351 s (22.5min) [so trace starts at Hawaii trace to have a greater gap (than Hong H Hawaii trace to have an even longer gap between P ar <u>Delay Calculations</u> : From Hong Kong data: Speed of S wave: $\frac{1958}{485}$ = 4.04 km/s Tokyo time for S waves: $\frac{4100}{4.04}$ = 1 015.6 [s] [So Tokyo lag time: 1 015.6 - 502.6 = 513 [s]] Hawaii time for S waves: $\frac{11020}{4.04}$ = 2 729 [s] [So Hawaii lag time: 2 729 - 1 351 = 1 378 [s]] Amplitude at Tokyo less than Hong Kong and less still depending on rounding off.)	awaii. ong Kong because the t 2:36:24] at 2:50:31] Kong trace) between nd S waves arriving.	ey have further to tra P and S waves arriv	ving.		

Que	stion							
Nun	nber							
FT	HT	Sub	-sectior	Mark	Answer	Accept	Neutral answer	Do not accept
	6				 5-6 marks The candidate constructs an articulate, integrated according the indicative content, which shows sequential reasoning irrelevant inclusions or significant omissions. The candidaccurate spelling, punctuation and grammar. 3-4 marks The candidate constructs an account correctly linking secontent, showing some reasoning. The answer address uses mainly appropriate scientific terminology and some teasoning. The candidate makes some relevant points, such as the reasoning. The answer addresses the question with signification terminology and inaccuracies in spelling, puncturation of the candidate does not make any attempt or give a relevant point or give a r	ount correctly linking in ng. The answer fully idate uses appropria some relevant points, ses the question with he accurate spelling, hose in the indicative gnificant omissions. T ctuation and gramma	relevant points, such addresses the ques te scientific terminol such as those in th some omissions. T punctuation and gra content, showing lin The candidate uses ar.	h as those in tion with no logy and e indicative he candidate immar. nited limited
		(c) Tota	al Mark	1	The earth in San Francisco may have a different stiffness or different density.	Incorrect change in velocity for a correct property. Waves travel faster in some rocks than others.		Different materials

GCSE Science - Physics MS Summer 2015