Surname

Centre Number Candidate Number

Other Names

GCSE 4462/02

S15-4462-02

SCIENCE A/CHEMISTRY

CHEMISTRY 1 HIGHER TIER

P.M. FRIDAY, 12 June 2015

1 hour

For Examiner's use only				
Question	Maximum Mark	Mark Awarded		
1.	7			
2.	7			
3.	4			
4.	6			
5.	6			
6.	6			
7.	6			
8.	5			
9.	7			
10.	6			
Total	60			

ADDITIONAL MATERIALS

In addition to this paper you will need a calculator and a ruler.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen. Do not use gel pen or correction fluid.

Write your name, centre number and candidate number in the spaces at the top of this page.

Answer **all** questions.

Write your answers in the spaces provided in this booklet. If you run out of space, use the additional page(s) at the back of the booklet, taking care to number the question(s) correctly.

INFORMATION FOR CANDIDATES

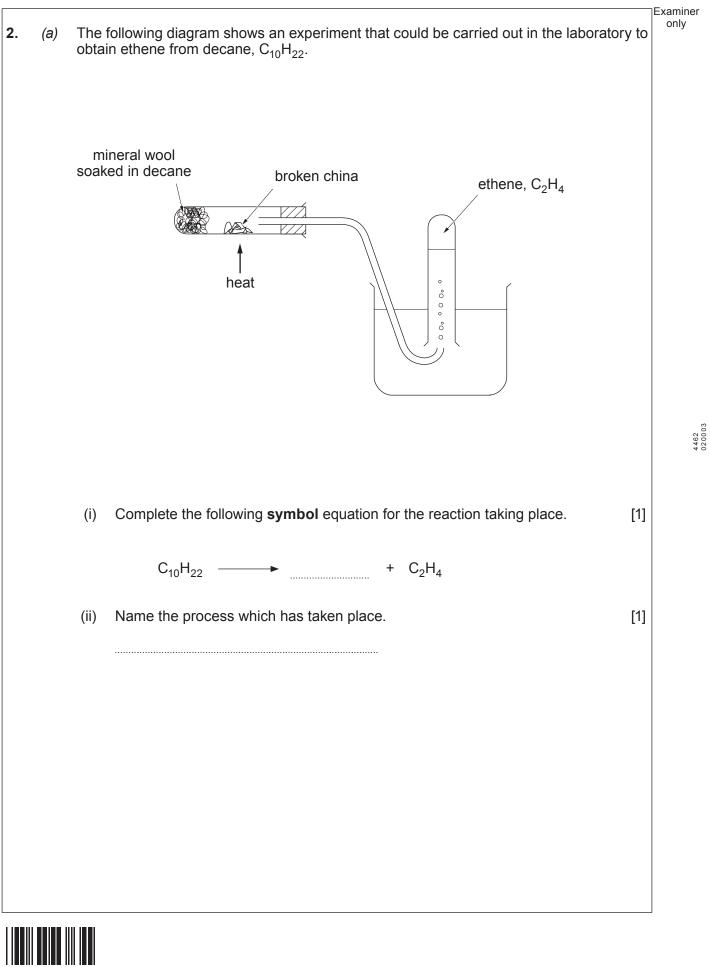
The number of marks is given in brackets at the end of each question or part-question.

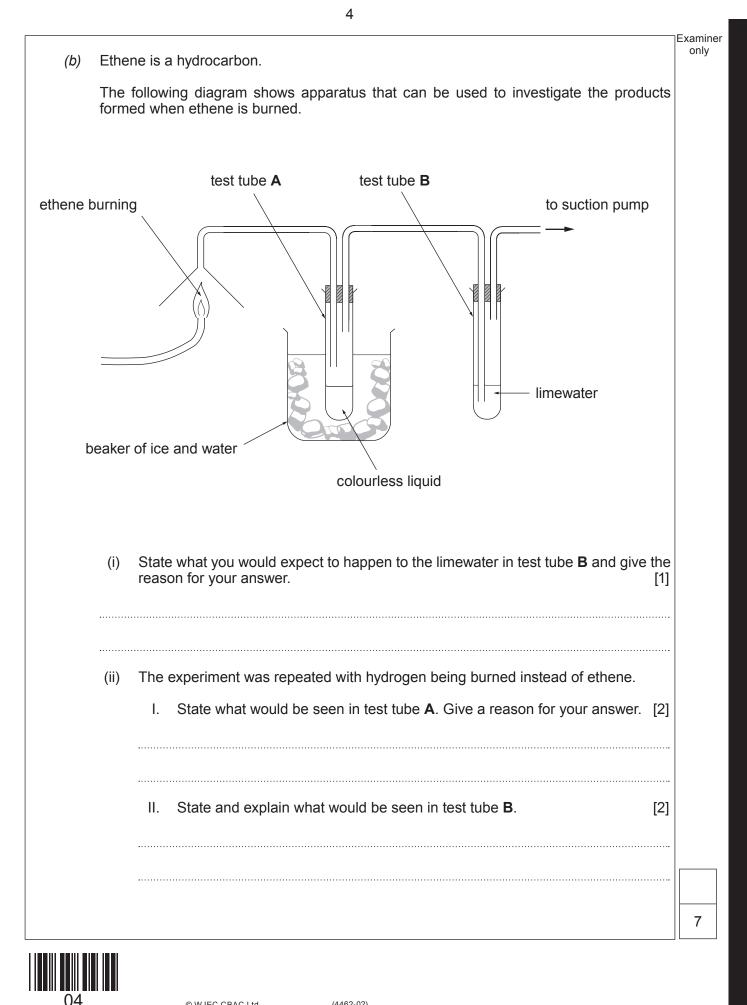
You are reminded that assessment will take into account the quality of written communication used in your answer to questions **4** and **10**.

The Periodic Table is printed on the back cover of the examination paper and the formulae for some common ions on the inside of the back cover.

© WJEC CBAC Ltd.

Examiner only


Answer all questions. The following table contains some information about five elements, A, B, C, D and E. 1. Element Melting point (°C) Boiling point (°C) Electrical conductivity Α 113 445 poor В -39 357 good С 3550 4828 poor D -101 -35 poor Ε 1540 2750 good (a) Give the letter of the element, A-E, that is a liquid at 20 °C. Explain your choice. [3] (b) State which element could be iron and explain your choice. [3] State one property of iron that is not mentioned in the table. (C) [1]


2

© WJEC CBAC Ltd.

(4462-02)

© WJEC CBAC Ltd.

The table below gives information about the concentration of ions in drinking water from four 3. different locations.

Location		Concer	ntration of ior	ns (mol/m ³ o	f water)	
Location	Na ⁺	NH_4^+	Mg ²⁺	F ⁻	SO4 ²⁻	NO ₃ -
Α	3.4	2.1	2.0	2.1	2.5	2.3
В	0.2	0.6	2.7	4.4	0.0	0.1
С	0.0	0.3	0.4	0.4	0.2	0.0
D	0.1	0.4	0.0	0.0	0.4	0.2

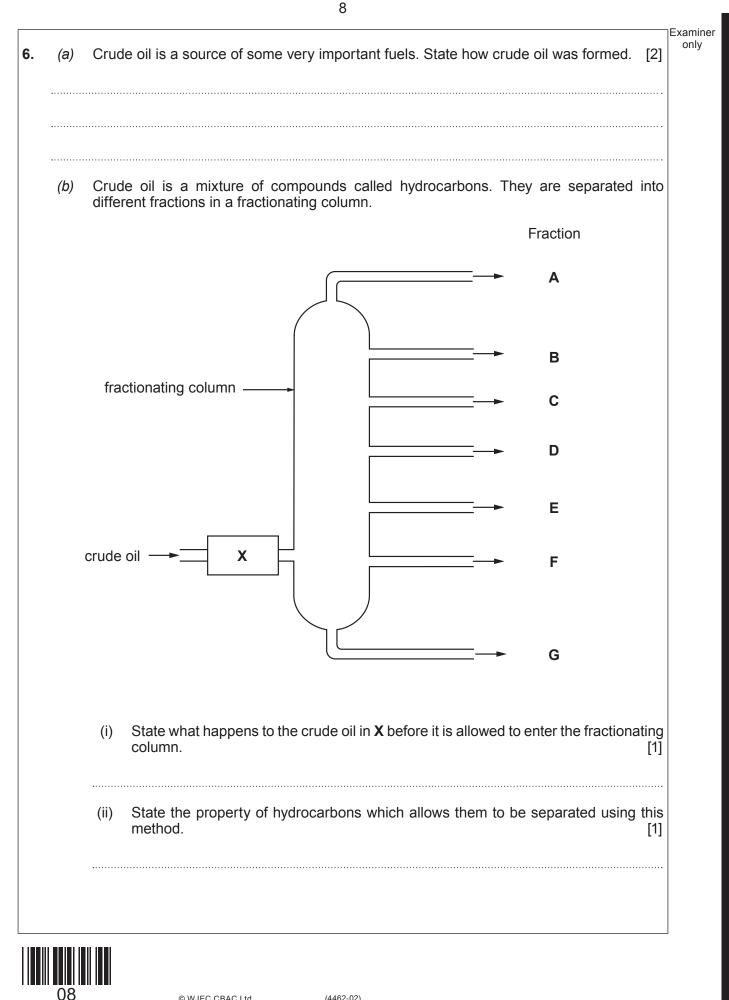
Sodium sulfate can be formed from the ions found in water at location **A**. (a) [1] (i)

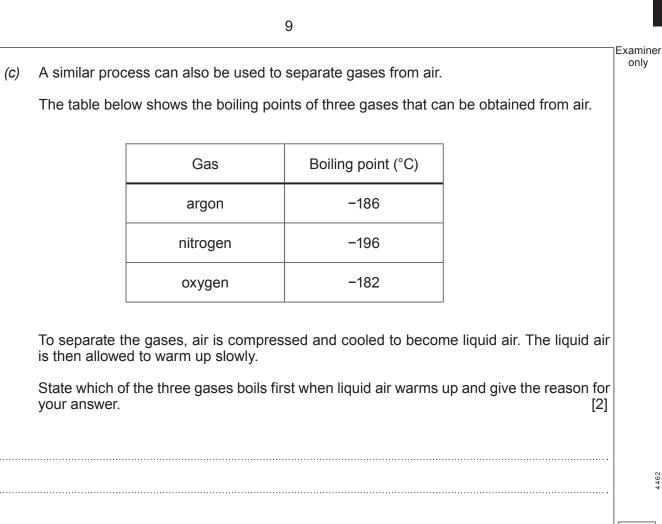
Write the formula of sodium sulfate.

- Suggest the names of two compounds that could be formed from the ions present (ii) in the water at location C. [1]
 - Compound 1 Compound 2
- (b) State the location where you would expect to find the least amount of tooth decay. Give a reason for your choice.

4462 020005

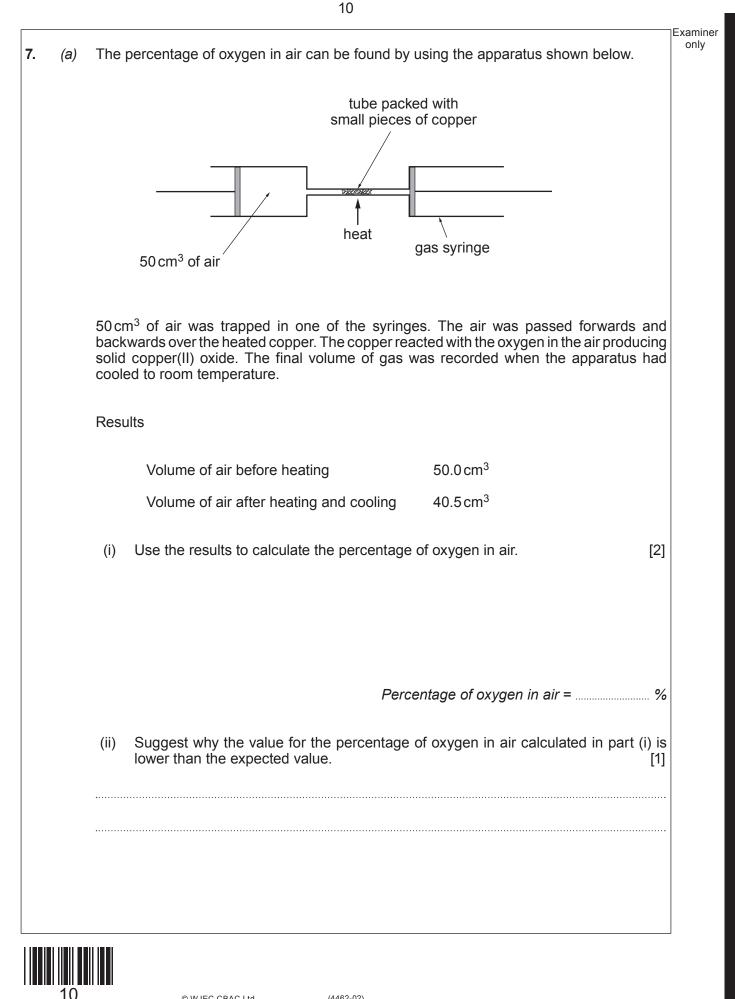
4

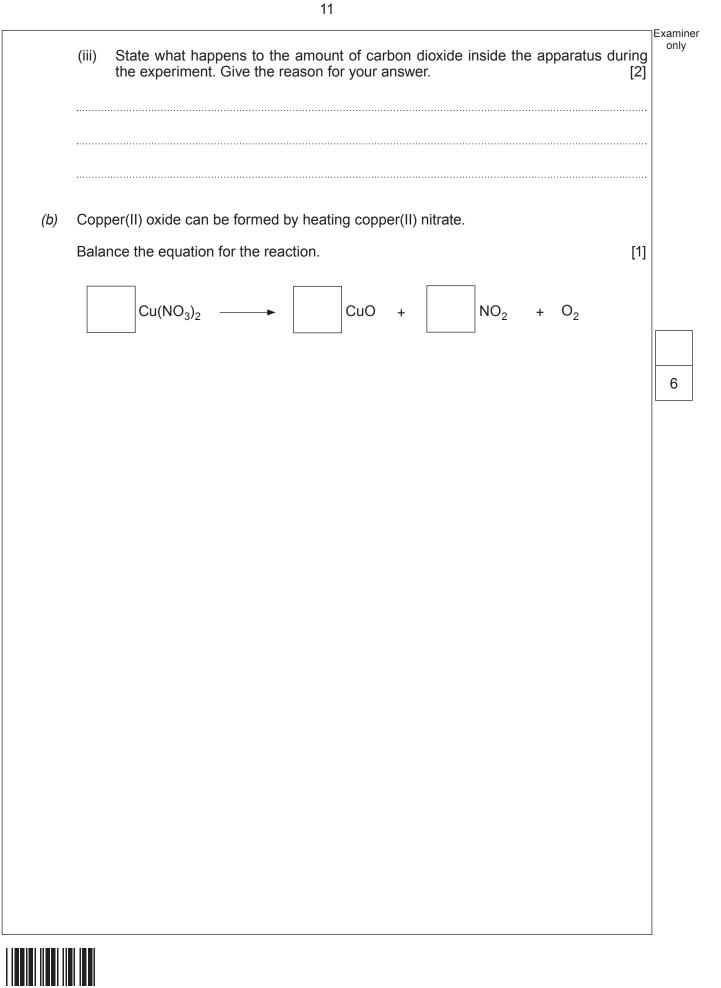

[2]


elease sulfur dioxide into the atmosphere id rain is formed and its effects on the env	[]

© WJEC CBAC Ltd.

		7	
5.	Copp	per(II) sulfate was made by reacting copper(II) carbonate with an acid.	Examiner only
	(a)	Give the name of the acid used. [1]	
	(b)	The first stage of the preparation is the addition of excess copper(II) carbonate to the acid. Give two observations that show a reaction is taking place. [2]	
	(C)	Describe how you would prepare copper(II) sulfate crystals from the mixture in part <i>(b)</i> . [2]	
	 (d)	A different salt can be made by reacting copper(II) oxide with dilute hydrochloric acid. Complete the word equation for the reaction that takes place. [1]	
c	copper(oxide	(II) _ hydrochloric	
			6




© WJEC CBAC Ltd.

(4462-02)

Turn over.

TopLevels.co.uk

<i>(a)</i> Co	mplete the following tab	le.		[3]
	Positive ion	Negative ion	Formula	
	Na⁺	Br⁻	NaBr	
	Ba ²⁺	OH⁻		
		SO4 ²⁻	Fe ₂ (SO ₄) ₃	
	K+		K ₂ HPO ₄	
	plain how a sodium ato dium bromide.			[2]

(a)	Alum	ninium can be extracted by the electrolysis of molten aluminium oxide.	0
	(i)	State what is added to aluminium oxide to reduce its melting point. [1]	
	(ii)	Aluminium metal is released at the cathode according to the following electrode equation. $AI^{3+} + 3e^{-} \longrightarrow AI$	
		Balance the electrode equation for the reaction that takes place at the anode. [1]	
(b)	Lead (i)	$O^{2^-} - e^- \rightarrow O_2$ I can be produced by the electrolysis of molten lead(II) bromide, PbBr ₂ . Complete the balanced electrode equation for the reaction that takes place at the cathode. [2]	
		+ → Pb	
	(ii)	Explain the formation of bromine during the electrolysis of molten lead(II) bromide. [3]	
·····			
·····			

10. The diagram below shows the blast furnace which is used to extract iron. iron ore, limestone and coke Image: the diagram below shows the blast furnace which is used to extract iron. iron ore, limestone and coke Image: the diagram below shows the blast furnace which is used to extract iron. iron ore, limestone and coke Image: the diagram below shows the blast furnace which is used to extract iron. iron ore, limestone and coke Image: the diagram below shows the blast furnace which is used to extract iron. iron ore, limestone slag Image: the diagram below shows the blast furnace which is used to extract iron. iron ore, limestone slag Image: the diagram below shows the blast furnace which is used to extract iron. iron ore, limestone slag Image: the diagram below shows the blast furnace which is used to extract iron. iron ore, limestone slag Image: the diagram below shows the blast furnace which is used to extract iron. iron ore, limestone slag Image: the diagram below shows the blast furnace which is used to extract iron. iron ore, limestone slag Image: the diagram below shows the blast furnace which is used to extract iron. iron ore, limestone slag Image: the diagram below shows the diagram b			Examiner only
and coke the tair the tair the traction of iron. [6 QWC]	10.		
And air		iron ore, limestone and coke	
		slag	
		Give a detailed description of the extraction of iron. [6 QWC]	
END OF PAPER 6			6

BLANK PAGE

15

PLEASE DO NOT WRITE ON THIS PAGE

© WJEC CBAC Ltd.

Question number	Additional page, if required. Write the question number(s) in the left-hand margin.	Examine only

Question number	Additional page, if required. Write the question number(s) in the left-hand margin.	Examine only
		1
		•••••

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

© WJEC CBAC Ltd.

(4462-02)

TopLevels.co.uk

Aluminium Al^{3+} Bromide Br^- Ammonium NH_4^+ Carbonate CO_3^{2-} Barium Ba^{2+} Chloride CI^- Calcium Ca^{2+} Fluoride F^- Copper(II) Cu^{2+} Hydroxide OH^- Hydrogen H^+ Iodide I^- Iron(II) Fe^{2+} Nitrate NO_3^- Iron(III) Fe^{3+} Oxide O^{2-} Lithium Li^+ Sulfate SO_4^{2-} Magnesium Mg^{2+} Nickel Ni^{2+} Potassium K^+ Silver Ag^+	POSITIVE IONS		NEGATIVE IONS		
Ammonium NH_4^+ Carbonate $CO_3^{2^-}$ Barium Ba^{2^+} Chloride CI^- Calcium Ca^{2^+} Fluoride F^- Copper(II) Cu^{2^+} Hydroxide OH^- Hydrogen H^+ Iodide I^- Iron(II) Fe^{2^+} Nitrate NO_3^- Iron(III) Fe^{3^+} Oxide O^{2^-} Lithium Li^+ Sulfate $SO_4^{2^-}$ Magnesium Mg^{2^+} Nickel Ni^{2^+} Potassium K^+ Silver Ag^+ SodiumNa^+ Na^+ Na^+	Name	Formula	Name	Formula	
BariumBa2+ChlorideCICalciumCa2+FluorideFCopper(II)Cu2+HydroxideOHHydrogenH*IodideIIron(II)Fe2+NitrateNO3^-Iron(III)Fe3+OxideO2-LithiumLi*SulfateSO42-MagnesiumMg2+NitrateSO42-NickelNi2+NiSulfateSO42-SilverAg*Na*SolumSolum	Aluminium	Al ³⁺	Bromide	Br ⁻	
BariumBa2+ChlorideCITCalciumCa2+FluorideFTCopper(II)Cu2+HydroxideOHTHydrogenH*IodideITIron(II)Fe2+NitrateNO3TIron(III)Fe3+OxideO2-LithiumLi*SulfateSO42-MagnesiumMg2+NitrateSO42-NickelNi2+Ag*SilverSodiumNa*Na*	Ammonium	NH4 ⁺	Carbonate	CO3 ²⁻	
Copper(II)Cu2+HydroxideOH-HydrogenH+IodideI-Iron(II)Fe2+NitrateNO3-Iron(III)Fe3+OxideO2-LithiumLi+SulfateSO42-MagnesiumMg2+NifrateSO42-NickelNi2+K+SilverAg*SoliumNa+K+Kato	Barium		Chloride	•	
HydrogenH*IodideI^Iron(II)Fe²+NitrateNO3^Iron(III)Fe³+OxideO²-LithiumLi*SulfateSO4²-MagnesiumMg²+NickelNi²+NickelNi²+SilverAg*SoliumNa*I	Calcium	Ca ²⁺	Fluoride	F⁻	
Iron(II)Fe2+NitrateNO3-Iron(III)Fe3+OxideO2-LithiumLi*SulfateSO42-MagnesiumMg2+SulfateSO42-NickelNi2+FotassiumK*SilverAg*SodiumNa*	Copper(II)	Cu ²⁺	Hydroxide	OH [−]	
Iron(II)Fe2+NitrateNO3-Iron(III)Fe3+OxideO2-LithiumLi*SulfateSO42-MagnesiumMg2+SulfateSO42-NickelNi2+FotassiumK*SilverAg*SodiumNa*	Hydrogen	H⁺	lodide	I_	
Iron(III)Fe ³⁺ OxideO ²⁻ LithiumLi ⁺ SulfateSO ₄ ²⁻ MagnesiumMg ²⁺ Ni ²⁺ FotassiumK ⁺ PotassiumK ⁺ SilverAg ⁺ SodiumNa ⁺ FotassiumSodium	Iron(II)	Fe ²⁺	Nitrate	NO ₃ ⁻	
MagnesiumMg²+NickelNi²+PotassiumK*SilverAg*SodiumNa*	Iron(III)	Fe ³⁺	Oxide	0 ^{2–}	
MagnesiumMg²+NickelNi²+PotassiumK*SilverAg*SodiumNa*	Lithium		Sulfate	SO4 ²⁻	
Nickel Ni ²⁺ Potassium K ⁺ Silver Ag ⁺ Sodium Na ⁺	Magnesium	Mg ²⁺		-	
Silver Ag ⁺ Sodium Na ⁺	Nickel	Ni ²⁺			
Sodium Na ⁺	Potassium	K ⁺			
Sodium Na ⁺	Silver	Ag ⁺			
Zinc Zn ²⁺	Sodium				
	Zinc				

PERIODIC TABLE OF ELEMENTS

Helium Krypton ²²² Rn ¹³¹ Xe Xenon Radon ²⁰ Ne $^{4}_{2}$ He Neon $^{40}_{18}Ar$ Argon $^{84}_{36}$ Kr 0 Fluorine Chlorine Bromine Astatine lodine $^{210}_{85}{\rm At}$ ⁸⁰ Br 19 9 円 ³⁵ CI 127 53 Selenium Tellurium Polonium Oxygen ¹²⁸ Te ²¹⁰ PO Sulfur ⁷⁹₃₄Se 0 800 800 ³² ¹⁶ ¹⁶ ဖ Bismuth Arsenic Antimony Nitrogen Phosphorus ¹²² Sb 75 AS ²⁰⁹ Bi ¹⁴ ∠ ³¹ P S Carbon Germanium Silicon ²⁰⁷ Pb 73 Ge ¹¹⁹ Sn Lead ¹² C ²⁸ Si Tin 4 Gallium Indium Boron Aluminium Thallium 70 Ga ¹¹⁵ In ²⁰⁴ TI 81 1 5 B ²⁷ AI က Cadmium Mercury ²⁰¹ Hg ¹¹² Cd ⁶⁵Zn 30 Zinc Copper ¹⁹⁷ Au ¹⁰⁸ Ag 64 Cu 29 Cu Silver Gold Palladium Nickel ¹⁰⁶ Pd ¹⁹⁵ Pt Platinum ⁵⁹ Ni 28 Hydrogen Cobalt Rhodium Iridium ¹⁰³ Rh ⁵⁹ Co ¹⁹² | r Ť Osmium ¹⁹⁰ Os Ruthenium $^{56}_{26}$ Fe ¹⁰¹ Ru Group lron Rhenium Technetium Manganese ¹⁸⁶ Re ⁵⁵ Mn $^{99}_{43}$ Tc Tungsten Key: Chromium Molybdenum ⁹⁶ Mo ¹⁸⁴ W $^{52}_{24}Cr$ Vanadium Tantalum Niobium ¹⁸¹ Ta ⁹³ Nb 51 V 23 Titanium Zirconium Hafnium ¹⁷⁹ Hf ⁴⁸ Ti ⁹¹₄₀Zr Scandium Yttrium Lanthanum ¹³⁹ La ²²⁷ Ac Actinium ⁴⁵ SC $^{89}_{39}$ Barium Calcium Radium Strontium Beryllium ¹³⁷ Ba ²²⁶ Ra Magnesium ²⁴₁₂Mg $^{40}_{20}$ Ca ⁹⁹Be 88 38 **S**r 2 Potassium Francium Sodium Lithium Rubidium Caesium ¹³³Cs ²³ Na ²²³ Fr ⁸⁷ ⁸⁶₃₇Rb $^{39}_{19}$ ⁷∟i 20

Element Symbol

 \times

Ν

Atomic number

∢

Mass number

Name

20

© WJEC CBAC Ltd.

(4462-02)

TopLevels.co.uk