GCSE MARKING SCHEME

MATHEMATICS - LINEAR

SUMMER 2015

INTRODUCTION

The marking schemes which follow were those used by WJEC for the Summer 2015 examination in GCSE MATHEMATICS - LINEAR. They were finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conferences were held shortly after the papers were taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conferences was to ensure that the marking schemes were interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conferences, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about these marking schemes.

Page

Paper 1 - Foundation Tier
 1

Paper 1 - Higher Tier 6
Paper 2 - Foundation Tier 12
Paper 2 - Higher Tier 16

PAPER 1 - FOUNDATION TIER

2015 Summer Linear Paper 1 (Non calculator) Foundation Tier	Marks	Comments
Parts (i), (ii) and (iii) marked together 1. (a) (i) 26043	B1	
1. (a) (ii) twenty thousand (and) fifteen	B1	
1. (a) (iii) 6028	B1	F.T. 'their (a)(i) in figures -20015 ' , provided equivalent difficulty. Accept answer in figures OR in words
1. (b) (i) 38 and 37	B1	
1. (b) (ii) 23 and 40	B1	
1. (b) (iii) 49	B1	Accept 7^{2} OR 7×7 but NOT 7
1. (c) 10000	B1	B1 for 'ten thousand' in words.
1. (d) 1, 3, 7, 21	B2	B1 for any 3 correct factors and up to 1 incorrect OR B1 for 4 correct factors and 1 incorrect Accept $1 \times 21,3 \times 7$
1. (e) (i) 2679	B1	
1. (e) (ii) 9627	B1	
2. (a) (i) 1 (ii) $1 / 4$ OR (0). 25	$\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \end{aligned}$	B0 for 'Divide by 4' etc. Must be the term. B0 for $1 \div 4$, but B 1 for $1 / 4$
2. (b) 600 OR 6 hundred OR hundred (s)	B1	B0 for 1 hundred OR 100 OR 6H OR H
$\begin{aligned} & \text { 2. (c) (0) } \cdot 66 \\ & \text { (0) } \cdot 67 \\ & \frac{33}{50}, 67 \%,(0) \cdot 68 \end{aligned}$	$\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$	Accept (0) $\cdot 66$, (0) $\cdot 67$, (0) $\cdot 68$ or equivalent F.T their decimal values
2. (d) 5×10 OR $5 \cdot 1 \times 10$ OR $5 \cdot 17 \times 10$ OR $5 \cdot 2 \times 10 \quad$ OR $5 \times 9 \cdot 8$ $50,51,51.7,52 \text { OR } 49$	M1 A1	F.T their estimates for simple calculations SC1 for unsupported 50 only Penalise extra working (towards actual answer) M0A0
3. (a) Value $=6 \times 7-5$ $=37$	$\begin{gathered} \hline \text { M1 } \\ \text { A1 } \end{gathered}$	Correctly substituted and correct attempt to evaluate. e.g. $6 \times 7-5=6 \times 2(=12)$ gets M0, A0.
3. (b) term number $=(67+5) / 6=12$	$\begin{gathered} \hline \text { M1 } \\ \text { A1 } \end{gathered}$	For correct substitution with addition and division Allow embedded references to the correct answer, $\text { e.g. } 67=12 \times 6-5 \text {. }$ NOTE: If a candidate then writes 'term number $=72$ ' award M1A0. Their final answer must be correct.
4. (a)		
	B1 B1 B1	A should be at $1 / 2$. Condone use of 6 for A. B should be between 0.75 (exclusive) and 1 exclusive. 0.75 is to the right of the 'e' in 'number'. Welsh scripts: To the right of the 'y' in 'cerdyn'. Condone use of 8 for B C should be at 1 . Condone use of 5 for C . Letters must be seen on scale (i.e. not probabilities)
4. (b) unlikely	B1	C.A.O. Award B1 3/10 AND unlikely, but B0 for 3/10 ONLY

2015 Summer Linear Paper 1 (Non calculator) Foundation Tier	Marks	Comments
5. (a) 5a	B1	
5. (b) ($W=$) 8	B2	B1 for either 35 OR -27 OR W $=\mathbf{3 5 - 2 7} \mathbf{- 8 W}$ B0 for $35 R$ and/or -27 T OR W $=35-27 \mathrm{~T}$
5. (c) y is 3 times x OR $\mathrm{y}=3$ times x ' $\mathrm{OR} \mathrm{y}=3 \mathrm{x}$ OR x is $1 / 3$ times y OR ' $x=1 / 3$ times y OR $x=y / 3$ $\underline{\text { OR (} \mathbf{x}, \mathbf{3 x} \text {) }}$	B2	B1 for $\times 3$ OR 'times 3 'OR ' x multiplied by 3 ' OR B1 for $\div 3$ OR 'divide by 3^{\prime}
5. (d) (i) ($\mathrm{x}=$) 4	B1	Accept embedded answers. B0 for $x 4$ Ignore use of incorrect letter.
5. (d) (ii) ($\mathrm{y}=) 12$	B1	Accept embedded answers. B0 for y12 Ignore use of incorrect letter.
5. (d) (iii) (t=) 2	B1	Accept embedded answers. B0 for $\mathbf{t} 2$ Ignore use of incorrect letter.
$\begin{aligned} & \text { To be viewed with diagram } \\ & \text { 6. (a) Missing inside segments }=2 \text { or } 5 \text { (and } 3 \text {) } \\ & \text { Perimeter }=6+3+2+3+3+6+3+2+3+3 \end{aligned}$	S1 M1 A1	One 2 or 5 in correct place gets S1 Attempt to add all sides of the shape FT 'their 2' for possible M1 If the 2 is not shown on diagram but is in the sum of sides for the perimeter then award S1 here. C.A.O
To be viewed with diagram 6. (b) Area $=6 \times 3+2 \times 3+6 \times 3$ $\begin{gathered} \text { OR } 3 \times 3+3 \times 8+3 \times 3 \text { OR } 4 \times 3 \times 3+3 \times 2 \\ =42 \mathrm{~cm}^{2} \end{gathered}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { U1 } \end{aligned}$	```You must check the diagram and their value for '2' or ' 5 ' in their part (a) Attempt to add all areas of the shape F.T. if missing sides (even incorrect) are clearly indicated Independent of all other marks.```
7. $\mathrm{A}(5,2), \mathrm{B}(-1,-5)$ and $\mathrm{C}(-4,3)$ plotted.	B3	B1 for each. Reversed coordinates get B0 every time. Letters A,B,C not needed as long as the point is identified.
Both parts (a) - (b) marked at the same time To be viewed with diagram 8. (a) Use overlay $\begin{aligned} & P \hat{Q} R=44^{\circ}\left(\pm 2^{\circ}\right) \\ & Q P=8 \mathrm{~cm}(\pm 2 \mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	$\underline{\text { B0 if } P \text { drawn on } \mathbf{~ Q R ~}}$
To be viewed with diagram If needed use the measuring tool to measure their PR 8. (b) Their $\mathrm{PR}={ }^{\prime} 7 \prime \quad(\pm 2 \mathrm{~mm})$ $\mathrm{PR} \times 10={ }^{\prime} 70^{\prime} \underline{(\mathbf{m})}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	Their measurement in cm Their measurement $\times 10$ evaluated correctly Allow F.T. even if P is on QR
$\text { 9. } \begin{aligned} 12 \times 15 \times 10 \quad & \\ & =1800\left(\mathrm{~cm}^{3}\right) \\ & =1.8(\text { litres }) \end{aligned}$	$\begin{gathered} \hline \text { M1 } \\ \text { A1 } \\ \text { B1 } \end{gathered}$	FT 'their $1800{ }^{\prime} \div 1000$

$\begin{gathered} 2015 \text { Summer Linear Paper } 1 \text { (Non calculator) } \\ \text { Foundation Tier } \end{gathered}$	Marks	Comments
15. (a) 1 cm represents either $\begin{array}{r} 25 \mathrm{~km} \text { or } 25000 \mathrm{~m} \text { or } 2500000 \mathrm{~cm} \\ 1: 2500000 \end{array}$	M1 A1	```Do not accept 4 cm represents 100 km (given in question) An answer of 1:25 is M0 (and A0) however allow 1:25 km for M1 1:2.5 million Allow 1: 2500 000cm (must be within a ratio)```
$\begin{aligned} & \text { 15.(b) } 100 / 2 \mathrm{hr} 30 \mathrm{~min} \text { or } 200 \mathrm{~km} \text { in } 5 \text { hours } \\ & 100 / 2.5 \text { or } 200 / 5 \\ & 40(\mathrm{~km} / \mathrm{h}) \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { m1 } \\ & \text { A1 } \end{aligned}$	Accept time written incorrectly, for the idea distance /time, e.g. 100/2.3, 100/150 Alternatively M1, m1 for 20 km in 30 minutes Sight of 40 irrespective of units given
16. $\begin{aligned} & (<\mathrm{ECB}=) 76\left(^{\circ}\right) \\ & (<\mathrm{EBC}=) 180\left(^{\circ}\right)-76\left(^{\circ}\right)-76\left(^{\circ}\right) \\ & (\mathrm{x}=) 152\left(^{\circ}\right) \end{aligned}$	$\begin{gathered} \hline \checkmark \\ \text { B1 } \\ \text { M1 } \\ \text { A1 } \\ \text { A1 } \end{gathered}$	Accept shown on the diagram or other indication FT 'their 76°, FT their $28\left({ }^{\circ}\right)$ provided M1 awarded Alternatively: $\begin{array}{lr} (<E C B=) 76\left({ }^{\circ}\right) & B 1 \\ \left((x=)<B E C=76\left({ }^{\circ}\right) \text { leading to }\right) 76\left(^{\circ}\right)+76\left(^{\circ}\right) M 2 \\ F T & M \text { their } 76^{\circ} \\ 152\left(^{\circ}\right) & A 1 \end{array}$
Reasons in any order: - Alternate or allied or (co)interior - Isosceles triangle (with angle sum 180°) - Angles on a straight line $\left(180^{\circ}\right)$ OR exterior angle equal to the sum of the two opposite interior angles OR for a $2^{\text {nd }}$ time: Alternate or allied or (co)interior	E2	All 3 appropriate reasons given E1 for any 2 of the 3 reasons given Do not accept informal descriptions of angles on parallel lines
17. (a) Correct rotation	B2	B1 for a near miss i.e. not on grid points but within the small grid square, or for 90° clockwise rotation about $(2,-1)$, or for 2 vertices correct.
17. (b) Correct enlargement, scale factor 2 in correct position	B2	B1 for scale factor 2 enlargement but incorrect position, or for correct position with intention scale factor 2 with at least 2 lines drawn correctly. Incorrect scale factor should be marked as if correct SF then penalise -1 .
$\begin{array}{cc}\text { 18. } 180-162(=18) \\ 360 \div(180-162) \\ & 20 \text { (sides) }\end{array}$	$\begin{aligned} & \hline \text { M1 } \\ & \text { m1 } \\ & \text { A1 } \end{aligned}$	C.A.O. Alternative: $n \times 162=(n-2) \times 180$ OR M1 for sight of matched trials with values of n with attempt to calculate $n \times 162$ and $(n-2) \times 180$ $n=\overline{20} \text { (sides) }$
$\text { 19. Volume }=\pi \times 4^{2} \times 10 \text { or } 3 \times 4^{2} \times 10 \quad 480\left(\mathrm{~cm}^{3}\right)$	$\begin{gathered} \hline \text { M1 } \\ \text { A1 } \end{gathered}$	ISW (change of units). Ignore units given for A1, but they must be correct in order to award E1 $160 \pi \text { gets M1A0 }$
Conclusion, e.g. 'incorrect as it is approximately (0). 48 litres', 'no he is wrong it holds about $480 \mathrm{~cm}^{3}$ not $5000 \mathrm{~cm}^{3}$, 'no he is incorrect as it is $4520 \mathrm{~cm}^{3}$ difference'	E1	'No' or 'incorrect' may be implied. The reason must be showing comparison (like units), e.g. 0.48(0) (with 5 litres), or 480 with $5000\left(\mathrm{~cm}^{3}\right)$, or $\mathbf{4 8 0 \mathrm { cm } ^ { 3 }}$ approximately $500 \mathrm{~cm}^{3}$ with $5000 \mathrm{~cm}^{3}$ FT 'their $480\left(\mathrm{~cm}^{3}\right)$ ' provided M1 awarded and 'their 480 ' has dimensionally correct units for comparison with 5 litres

PAPER 1 - HIGHER TIER

\begin{tabular}{|c|c|c|}
\hline 2015 Summer Linear Paper 1 Higher Tier \& \& Comments \\
\hline 1(a) \(300 \times 1.52\) or equivalent calculation 456 (US dollars) \& \[
\begin{gathered}
\hline \text { M1 } \\
\text { A1 }
\end{gathered}
\] \& \\
\hline \begin{tabular}{l}
1(b) \(600 \div 1.5\) or \(600 \times 2 \div 3\) or \(585 \times 2 \div 3\) or \(585 \div 1.5\) or other suitable estimation calculation \\
Estimate in the range (\(\mathfrak{f}\)) 360 to \((\mathfrak{£}) 410\) or \((\mathfrak{£}) 300\), from at least 1 appropriately estimated value
\end{tabular} \& M2

A1 \& | Allow $600 \div 2$ (as both values are rounded tol sig. fig.) |
| :--- |
| Do not accept $585 \div 2$ |
| M1 for $600 \div 1.52$ or $590 \div 1.52$ or $585 \div 1.52$ (original question) or trial as far as ' $£ 100$ is approximately $\$ 150$ ' without further refinement |
| If no working, SC1 for a suitable estimate within tolerance given |

\hline | 2(a) 1 cm represents either 25 km or 25000 m or 2500000 cm |
| :--- |
| $1: 2500000$ | \& M1

A1 \& | Do not accept 4 cm represents 100 km (given in question) An answer of $1: 25$ is M0 (and A0) however allow $1: 25 \mathrm{~km}$ for M1 |
| :--- |
| $1: 2.5$ million |
| Allow 1: 2500000 cm (must be within a ratio) |

\hline $$
\begin{aligned}
& \text { 2(b) } 100 / 2 \mathrm{hr} 30 \mathrm{~min} \text { or } 200 \mathrm{~km} \text { in } 5 \text { hours } \\
& \qquad 100 / 2.5 \text { or } 200 / 5
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& \text { M1 } \\
& \text { m1 } \\
& \text { A1 }
\end{aligned}
$$

\] \& | Accept time written incorrectly, for the idea distance /time, e.g. 100/2.3, 100/150 |
| :--- |
| Alternatively M1, m 1 for 20 km in 30 minutes |
| Sight of 40 irrespective of units given |

\hline | 3. $\left(\langle\mathrm{ECB}=) 76\left(^{\circ}\right)\right.$ |
| :--- |
| $(<E B C=) 180\left({ }^{\circ}\right)-76\left(^{\circ}\right)-76\left(^{\circ}\right)$ | \& \[

$$
\begin{aligned}
& \hline \text { B1 } \\
& \text { M1 }
\end{aligned}
$$
\] \& Accept shown on the diagram or other indication FT 'their 76° '

\hline $$
(\mathrm{x}=) 152\left(^{\circ}\right)
$$ \& \[

$$
\begin{aligned}
& \text { A1 } \\
& \text { A1 }
\end{aligned}
$$
\] \& FT their 28(${ }^{\circ}$) provided M1 awarded Alternatively:

$$
\begin{array}{lr}
(<E C B=) 76\left(^{\circ}\right) & B 1 \\
\left((x=)<B E C=76\left(^{\circ}\right) \text { leading to }\right) 76\left({ }^{\circ}\right)+76\left({ }^{\circ}\right) M 2 \\
\text { FT }{ }^{\circ} \text { their } 76^{\circ} \\
152\left(^{\circ}\right) & A 1
\end{array}
$$

\hline | Reasons in any order: |
| :--- |
| - Alternate or allied or (co)interior |
| - Isosceles triangle (with angle sum 180°) |
| - Angles on a straight line $\left(180^{\circ}\right) \mathrm{OR}$ exterior angle equal to the sum of the two opposite interior angles OR for a $2^{\text {nd }}$ time: Alternate or allied or (co)interior | \& E2 \& | All 3 appropriate reasons given |
| :--- |
| E1 for any 2 of the 3 reasons given |
| Do not accept informal descriptions of angles on parallel lines |

\hline 4. Bearing of $055\left({ }^{\circ}\right.$) \& B2 \& B1 for an answer of $55\left(^{\circ}\right.$), or their final answer is from the calculation $235\left({ }^{\circ}\right)-180\left({ }^{\circ}\right)$ or $90\left({ }^{\circ}\right)-35\left({ }^{\circ}\right)$

\hline
\end{tabular}

2015 Summer Linear Paper 1 Higher Tier		Comments
5. For spoons: sight of $450 \div 180$ OR sight of 450 split as 360,90 or $180,180,90$	M1	OR 3(spoons per min) or 30 (spoons in) 10 mins
(Machine stopped at) 11(:)30 (am)	A2	A1 for 2.5 (hours) or 2 hours 30 minutes or 150 minutes For A1 allow poor or incorrect notation of time, e.g. 2.3 hrs
For forks: 240×2.5 OR $240 \div 60=4$ (forks per minute) and (4) $\times 150$ or equivalent 600 (forks)	M1 A1	FT 'their 2.5 hours' or 'their 150 minutes' FT 'their 2.5 hours' provided not a whole number or 'their 150 minutes' provided not a multiple of 60
Look for: - Appropriate labelling of calculations, e.g. 'number of spoons', 'time to produce 450 spoons', 'number of spoons produced in 10 minutes', 'number of forks produced', etc - Time written correctly, 11(:)30 (am) QWC2: Candidates will be expected to - present work clearly, maybe with diagrams and words explaining process or steps	$\begin{gathered} \text { QWC } \\ 2 \end{gathered}$	Alternative if the time period is not considered (for max 3 marks): M1 for an attempt to find the multiplier $180 \times \ldots=450$, e.g. 18:24 and 450 $\div 18(=25)$, M1 for a final calculation that could lead to a correct answer, e.g. applying the multiplier to the right hand side of their ratio, for attempt $24 \times 450 \div 18$ A1 for 600 forks
AND - make few if any mistakes in mathematical form, spelling, punctuation and grammar and include units in their final answer		QWC2 Presents relevant material in a coherent and logical manner, using acceptable mathematical form, and with few if any errors in spelling, punctuation and grammar.
QWC1: Candidates will be expected to - present work clearly, maybe with diagrams and words explaining process or steps OR - make few if any mistakes in mathematical form, spelling, punctuation and grammar and include units in their final answer		QWC1 Presents relevant material in a coherent and logical manner but with some errors in use of mathematical form, spelling, punctuation or grammar OR evident weaknesses in organisation of material but using acceptable mathematical form, with few if any errors in spelling, punctuation and grammar. QWC0 Evident weaknesses in organisation of material, and errors in use of mathematical form, spelling, punctuation or grammar.
6(a) Correct rotation	B2	B1 for a near miss i.e. not on grid points but within the small grid square, or for 90° clockwise rotation about $(2,-1)$, or for 2 vertices correct
6(b) Correct enlargement, scale factor $1 / 2$ in correct position	B2	B1 for scale factor $1 / 2$ enlargement but incorrect position, or for correct position with intention scale factor $1 / 2$ with at least 2 lines drawn correctly
$\begin{aligned} & 7 . \quad 180-162(=18) \\ & 360 \div(180-162) \end{aligned}$	$\begin{aligned} & \hline \text { M1 } \\ & \text { m1 } \end{aligned}$	
20 (sides)	A1	CAO Alternative: $n \times 162=(n-2) \times 180 \quad$ M2 OR M1 for sight of matched trial with value of $n>9$ with attempt to calculate $n \times 162$ and $(n-2) \times 180$ $n=20 \text { (sides) }$
8. $1 / 6 \times 1 / 6$ 1/36	M1 A1	Allow for identification of 1 out of 36 outcomes, e.g. 2-way table, or sight of 1 in 36 , or 1 out of 36 , or 1:36 CAO

2015 Summer Linear Paper 1 Higher Tier		Comments
9(a) ($\mathrm{x}=$) 3	B2	Accept embedded answers for B2 or B1 $B 1$ for one correct evaluated trial (excluding $x=0$) B1 for 27-6 $=21$ without showing an embedded $x=3$ or giving an answer $x=3$ and $x=-3$
9(b) $\mathrm{y}=7, \mathrm{y}=-7 \quad$ OR $\quad \mathrm{y}= \pm 7$	B2	B1 for either solution, or B1 for $(y-7)(y+7)=0, y= \pm \sqrt{49}$ $B 0$ for $(y-7)(y+7)$ or $y=\sqrt{ } 49$ Allow B2 for embedded answers, e.g. $-7^{2}=49$ and $7^{2}=49$, or B1 for one embedded answer
9(c) Expression $3 \mathrm{x}^{4}-5 \mathrm{x}^{3}$	B2	Mark final answer B1 for sight of either term correct
$\begin{aligned} & \text { 10. } 19 / 4+19 / 8 \text { or } \begin{array}{c} 4+2+6 / 8+3 / 8 \\ \text { or } \quad \text { or } \frac{38}{8}+\frac{19}{8} \end{array} \\ & \frac{38+19}{8} \text { or } \frac{57}{8} \text { or } 6 \frac{9}{6} / 8 \end{aligned}$	B1 B1 B1	For B1 allow 28.5/4 or 7.125 or $7^{0.5} / 4$ Or equivalent, e.g. 114/16 or 228/32, etc. FT from 1 error in the calculation of 1 of the numerators provided the denominators are common If no marks, allow SC1 for an answer of $11 / 8$ from $3 / 4+3 / 8$
11. Volume $=\pi \times 4^{2} \times 10$ or $3 \times 4^{2} \times 10$ $480\left(\mathrm{~cm}^{3}\right)$ Conclusion, e.g. 'incorrect as it is approximately (0). 48 litres', 'no he is wrong it holds about $480 \mathrm{~cm}^{3}$ not $5000 \mathrm{~cm}^{3}$, 'no he is incorrect as it is $4520 \mathrm{~cm}^{3}$ difference'	M1 A1 E1	ISW (change of units). Ignore units given for A1, but they must be correct in order to award E1 'No' or 'incorrect' may be implied. The reason must be showing comparison (like units), e.g. 0.48(0) (with 5 litres), or 480 with $5000\left(\mathrm{~cm}^{3}\right)$, or $480 \mathrm{~cm}^{3}$ approximately $500 \mathrm{~cm}^{3}$ with $5000 \mathrm{~cm}^{3}$ FT 'their $480\left(\mathrm{~cm}^{3}\right)^{\prime}$ provided M1 awarded and 'their 480 ' has dimensionally correct units for comparison with 5 litres
12(a)(i) $4 \mathrm{n}+5$ or equivalent unsimplified	B2	B1 for sight of 4n
12(a)(ii) States or implies 'YES' with a reason, e.g. ' yes as $149-5=144$ and this can be divided (exactly) by 4', OR 'correct as 144 is a multiple of 4 ', OR ' $n=36$ ', OR 'adding 4 repeatedly after the 29 giving 149 ', OR 'Yes as ($149-29) \div 4$ is a whole number'	E1	Do not award for 'correct' or 'yes' without a valid reason Accept ' $n=36$ ' as 'implies yes' Accept correct full sequence to 149 or partial sequence shown with at least 3 correct terms including 149, e.g. 145, 149,153 or $49 \ldots 69 \ldots .129 \ldots 149$ FT based on 149 - 'their 5' then divided by 4, provided equivalent level of difficulty
$\begin{aligned} & 12(\mathrm{~b})(\mathrm{i}) \quad 9 \times 10 \text { or } 90 \text { or } 10 \times 11 \\ & \text { States or implies Imran is incorrect, e.g. } \\ & \text { 'Imran is incorrect as there are } 90 \text { panes', } \\ & \text { 'It is the number of panes in Pattern } 9 \text { ', } \\ & \text { '90 is Pattern } 8 \text { ', } \\ & \text { ' } 110 \text { is Pattern } 9 \text { ' } \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	

| 2015 Summer Linear Paper 1
 Higher Tier | | Comments |
| :--- | :---: | :--- |$|$| 12(b)(ii) Shows that $\mathrm{n}^{2}+3 \mathrm{n}+2=(\mathrm{n}+1)(\mathrm{n}+2)$
 Pattern justification: e.g. 'Product of 1 more across than
 Pattern number and one more vertically than across', OR
 'Multiplication of one extra across and two extra up' | E1
 E1 | |
| :--- | :--- | :--- |

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 2015 Summer Linear Paper 1 Higher Tier \& \& \multicolumn{5}{|c|}{Comments} \\
\hline \begin{tabular}{l}
\[
\begin{aligned}
\& \text { 15. Sight of } 2 x+3 y+2 x+3 y=94 \\
\& \text { OR } x+6+y+4+x+6+y+4=56 \\
\& 4 x+6 y=94 \text { AND } 2 x+2 y=36
\end{aligned}
\] \\
or unsimplified equivalents of both equations \\
Method to solve, equating x or y , allowing 1 error in non equate variable \\
First variable \\
Method to find \(2^{\text {nd }}\) variable, substitution \\
Second variable \\
Method to calculate 1 area, \\
e.g. \((2 \times 7) \times(3 \times 11)\) or \((7+6) \times(11+4)\)
\[
462\left(\mathrm{~cm}^{2}\right) \text { AND } 195\left(\mathrm{~cm}^{2}\right)
\]
\end{tabular} \& S1
M1
M1
M1
A1
m1
A1
M1

A1 \& \multicolumn{5}{|l|}{| May be implied in later working |
| :--- |
| Allow S0 but M1 for $2 x+3 y=94$ AND $x+y=46$, or consistent unsimplified equivalents of these equations |
| FT 'their equations' with equivalent level of difficulty $\mathrm{x}=7(\mathrm{~cm}) \text { or } \mathrm{y}=11(\mathrm{~cm})$ |
| FT 'their equations' or $1^{\text {st }}$ variable |
| FT, for the M mark only, 'their x ' and 'their y ' provided at least M1 previously awarded |
| CAO |
| (Incorrectly using $1 / 2$ perimeter leads to: $2 x+3 y=94 \text { AND } x+y=46 \text { giving } x=44(\mathrm{~cm}) \& y=2(\mathrm{~cm})$ and areas $528 \mathrm{~cm}^{2}$ and $300 \mathrm{~cm}^{2}$ which is awarded $S 0, M 1$, M1, A1, m1, A1, M1, A0 giving 6 marks) |}

\hline 16(a) Method of finding an area 2 correct areas AND intention to add all areas 250 \& $$
\begin{aligned}
& \hline \text { M1 } \\
& \text { M1 } \\
& \text { A1 }
\end{aligned}
$$ \& \multicolumn{5}{|l|}{Areas are $10+60+100+40+20+20$ CAO}

\hline 16(b) (100 \times) 30/250 \& M1

A1 \& \multicolumn{5}{|l|}{| FT their ($1 / 2 \times 20+20$)/ 'their 250 ', including from non area consideration in (a) $3 / 25$ |
| :--- |
| If no marks, award SC1 for an answer of 88(\%) |}

\hline | 16(c) Identifying the 125,125 split or 125.5 |
| :--- |
| 55 or 55.5 (or 44.5 or 45) as a proportion of the 100 or equivalent $25.5 \text { (minutes) or } 25.6 \text { (minutes) }$ | \& M1

m1

A1 \& \multicolumn{5}{|l|}{| Accept sight of ($250 \div 2=$) 125 |
| :--- |
| FT must be from at least M2 awarded in (a) |
| No FT from an answer of 25 in (a) |
| May be indicated on the histogram. |
| Sight of $20+10 \times 55 / 100$, or $30-10 \times 45 / 100$ is awarded M1, m1 |
| Accept a vertical line at 25.5 indicated on the histogram |
| CAO. Must be stated. Do not accept 25.55 (minutes) |}

\hline 17(a) Attempt to subtract $10 x=3.4646$.. from 1000 $x=$ $346.46 \ldots$ or alternative method 343/990 \& \[
$$
\begin{aligned}
& \text { M1 } \\
& \text { A1 }
\end{aligned}
$$

\] \& \multicolumn{5}{|l|}{| Or equivalent for $100 x=34.646 .$. and $x=0.34646$.. |
| :--- |
| Final answer of 34.3/99 M1 only |}

\hline | 17(b) 49-35 $\sqrt{2}-35 \sqrt{2}+50$ $=99-70 \sqrt{2}$ |
| :--- |
| Irrational | \& | B1 |
| :--- |
| B1 |
| E1 | \& \multicolumn{5}{|l|}{| FT correctly simplified (equivalent level of difficulty) provided at least 3 of the terms are correct OR $49 \pm \mathrm{a} \sqrt{2}+50 \text { with } \mathrm{a} \neq 0$ |
| :--- |
| Depends on 'their answer' including a surd and at least B1 previously awarded |}

\hline | 18(a) Tangent drawn at $\mathrm{t}=1.5$ |
| :--- |
| Method, difference y / difference x |
| Evaluated answer correct to 1dp from their reasonable tangent | \& \[

$$
\begin{gathered}
\hline \text { B1 } \\
\text { M1 } \\
\text { A1 }
\end{gathered}
$$
\] \& \multicolumn{5}{|l|}{}

\hline | 18(b)(i) For the 4 appropriate values of v |
| :--- |
| Split into the 3 areas and attempt to sum, or an attempt to substitute into the trapezium rule |
| Correct substitution into trapezium rule, ${ }^{3} / 2(0+0+2(8+5))$ 39 (m) | \& | B1 |
| :--- |
| M1 |
| A1 |
| A1 | \& | May be s |
| :--- |
| t |
| v |
| Attempt
 $3 / 2(0+0+$
 OR for 3
 CAO | \& \[

$$
\begin{aligned}
& \frac{\text { on th }}{0} \\
& \hline 0 \\
& \hline \text { bstitu) } \\
& +5) \text {) } \\
& \text { ect a }
\end{aligned}
$$
\] \& \& orkin

6
5
...$(0+$
5 in

5 wi \& | 9 |
| :--- |
| 0 |
| (8+5)) or |
| attempt to s |

\hline 18(b)(ii) Example, 'use more ordinates', 'cut into narrower strips', or consideration of the additional area \& E1 \& \multicolumn{5}{|l|}{Do not accept 'count squares'}

\hline
\end{tabular}

$\begin{array}{c}\text { 2015 Summer Linear Paper 1 } \\ \text { Higher Tier }\end{array}$		Comments
$\begin{array}{c}\text { 19(a) } 10 / 20 \times 10 / 19(=100 / 380) \\ 10 / 20 \times 10 / 19+10 / 20 \times 10 / 19 \\ 200 / 380(=10 / 19)\end{array}$	B1	
M1		
A1		

Ignore incorrect cancelling

Alternative

1 \times 10 / 19 \quad M 2

10 / 19 \quad Al\end{array}\right]\)

PAPER 2 - FOUNDATION TIER

2015 Summer Linear Paper 2 (Calculator allowed) Foundation Tier	Marks	Comments
	B1 B1 B1 B1	F.T. until second error Award B1 for a correct total (F.T.)even if only seen in (b)
(b) 10% $=(£) 4.02$ 5% $=(\mathfrak{(}) 2.01 \quad$ OR $(0) .05 \times 40.2(0)$ Discount is $(\mathfrak{f}) 2.01$ (I.S.W.)	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	Any correct method for finding 5\%. F.T. their total. Ignore extra decimal places in their answer. Allow 2.01% for A1, but 2.01p gets M1,A0. If (£)38.19 given then award M1, A1 for implied (£) 2.01. $10 \%=(\mathfrak{f}) 4,5 \%=(\mathfrak{f}) 2$ gets M0,A0 not of equivalent diff.
2. Width of pitch 50 km 50 m 50 mm 50 cm Weight (man) 70 kg 70 g 70 mg 7 kg Volume (cup) 1 litre $25 \mathrm{~cm}^{3}$ 250 ml 1 ml Vol 250 Area of page $3 \mathrm{~m}^{2}$ $300 \mathrm{~cm}^{2}$ $30 \mathrm{~mm}^{2}$ $300 \mathrm{~cm}^{3}$	$\begin{gathered} \hline \checkmark \\ \text { B1 } \end{gathered}$	
3. All parts (a) to (c) marked together (a) Water mark at 320 ml	B1	Look at the diagram also in (a) to (c) Water level shown at ONE GRADUATION ABOVE 300 Closer to 320 than 300 OR 340
$\begin{aligned} & \text { 3. (b) Water level }=480 \\ & \text { Water in a jug }=480 / 6 \\ & =80(\mathrm{ml}) \text { I.S.W. } \end{aligned}$	$\begin{aligned} & \hline \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	FT 'their 480'
3. (c) $480+360=840$ Water marked at 840	$\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \end{aligned}$	For 'their 480 from part (b)' +360 Water level shown at ONE GRADUATION ABOVE 800. F.T. 'their 840 ', if not a multiple of 200. Closer to 840 than 800 OR 880
4. (a) (Viewed with diagram) Evidence of square counting $\begin{aligned} & \underline{49-54 \text { inclusive }} \\ & \underline{196-216 \text { inclusive }\left(\mathrm{cm}^{2}\right)} \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ \text { B1 } \end{gathered}$	F.T. 'their $49-54$ ' $\times 4$ Unsupported answer in the range 196-216 gets 3 marks.
4. (b) Lines Arc	$\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \end{aligned}$	For both lines. F.T. their lines, must have opposite curvature, start at the correct place and end at the start of their line.
5. (a) tangent radius	$\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \end{aligned}$	Accept misspellings as long as recognisable Accept misspellings as long as recognisable
5. (b) (i) 9.5 (cm) to 9.9 (cm) inclusive	B1	
5. (b) (ii) Parallel through C	B1	Watch out for perpendicular(r(s) as well as a parallel line which could be their way of 'constructing the parallel line'
6. (a) $\frac{10}{15} \longrightarrow \frac{6}{15} \frac{8}{10} \quad \frac{4}{10}$	B2	B1 for any 2 correct and up to 1 incorrect OR B1 for all 3 correct and 1 incorrect.
6. (b) 13 (crates) 13 (crates) with 64 (apples left over.)	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	For 13 or 13.8(88...) OR 1000/72 OR 936 OR repeated subtraction 13 or 14 times. $\mathbf{1 3 \times 7 2 = 9 3 6 , 6 4}$ gets M1,A1 M1,A0 for 14 crates and 64 apples. 14 (crates) OR 64 (apples) on its own get M0,A0
6. (c) (0). 07	B1	Do NOT accept 7/100
$\begin{aligned} & \text { 6. (d) } \frac{48}{100} \times 82.5 \quad \text { OR } \quad(0) .48 \times 82.5 \\ & =39.6 \text { (I.S.W.) } \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	Any correct method for finding 48\% A0 for 39.6%, but allow A1 for $£ 39.6$ (0)
$\begin{aligned} & \text { 6. (e) } 3 \times 12 \text { OR } 252 \div 7 \\ & 36 \end{aligned}$	$\begin{gathered} \hline \text { M1 } \\ \text { A1 } \end{gathered}$	Any correct method which should get 36 C.A.O. Mark final answer. 36/84 gets M1, A0. Premature approximation methods such as $3 / 7=(0) .42$ OR $(0) .43$, then 35.28 or 36.12 gets M1,A0 Unsupported answers other than 36 get M0,A0

2015 Summer Linear Paper 2 (Calculator allowed) Foundation Tier	Marks	Comments
```Overlay 7. At least one 6 by 3 rectangle At least two 6 by 4 rectangles At least two 4 by 3 rectangles Makes a valid net```	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$	Rectangles must have at least one side in common Notes: Wrong dimensions gets B0; allow $\pm 2 \mathrm{~mm}$ Ignore 'flaps'.   Must be a correct net that would produce $\mathbf{a}$ cuboid. Allow this B1 even if only 5 sides (open box)
8. (a) (i) Subtract 5 (from the previous term)	B1	Accept -5 , take away 5. B0 for $n-5$ or $-5 n+51$
8. (a) (ii) Multiply (the previous term) by -4	B1	Accept $\times-4$. B0 for $n \times-4$   B1 for (1) multiply by 4 and change sign   OR (2) times the previous term by 4 using a positive then minus number pattern   OR (3) B1 for times by 4 each time but every other number is negative   B0 for 'times 4 add a minus then times 4 take away the minus'
8. (b) (i) $10 b$	B1	Accept $b \times 10$ or $b 10$. Ignore $\mathrm{b}=\mathrm{or}=\mathrm{b}$ or any other letter $\underline{B 0}$ for $b$ buttons $\times 10$ shirts. $\quad 10 b=b=10$ gets $B 0$.
8. (b) (ii) $k / 5$	B1	Allow $k \div 5$. B0 for $k$ blocks $/ 5$ rows Ignore $\mathrm{k}=$ or $=\mathrm{k}$ or any other letter
9. (a) $4\left({ }^{\circ} \mathrm{C}\right)$	B1	Accept $-4\left({ }^{\circ} \mathrm{C}\right)$
9. (b) $97\left({ }^{\circ} \mathrm{C}\right)$	B1	Accept -97( ${ }^{\circ} \mathrm{C}$ )
9. (c) $2\left({ }^{\circ} \mathrm{C}\right)$	B1	
```10. Week hire \(=32.20\) 4 day hire \(=16.10+3 \times 8.15\) \(=(£) 40.55\) Difference \(=40.55-32.20\) \(=\) (£) 8.35```	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ \text { M1 } \\ \text { A1 } \end{gathered}$	FT 'their derived 40.55'
Look for - spelling - clarity of text explanations, - the use of notation (watch for the use of ' $=$ ', $£$ being appropriate) QWC2: Candidates will be expected to - present work clearly, with words explaining process or steps AND - make few if any mistakes in mathematical form, spelling, punctuation and grammar and include units in their final answer QWC1: Candidates will be expected to - present work clearly, with words explaining process or steps OR - make few if any mistakes in mathematical form, spelling, punctuation and grammar and include units in their final answer	$\begin{gathered} \mathrm{QWC} \\ 2 \end{gathered}$	QWC2 Presents relevant material in a coherent and logical manner, using acceptable mathematical form, and with few if any errors in spelling, punctuation and grammar. QWC1 Presents relevant material in a coherent and logical manner but with some errors in use of mathematical form, spelling, punctuation or grammar . OR Evident weaknesses in organisation of material but using acceptable mathematical form, with few if any errors in spelling, punctuation and grammar. QWC0 Evident weaknesses in organisation of material, and errors in use of mathematical form, spelling, punctuation and grammar.

PAPER 2 - HIGHER TIER

2015 Summer Linear Paper 2 Higher Tier		Comments
$\begin{gathered} \text { 1(a) } 6 x+4 x=43-13 \\ 10 x=30 \quad \text { or } \quad x=30 / 10 \quad x=3 \end{gathered}$	$\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$	FT until $2^{\text {nd }}$ error Must be simplified Accept an embedded answer for B3
1(b) ($\mathrm{x}=$) 100	B1	Accept embedded answer
1(c) $30-x=44 \div 2$ or $\quad 60-2 x=44$ $30-x=22$ or $0 x=44-60$ or $60-44=2 x$ or $-x=-8$ $x=8$	$\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$	FT until $2^{\text {nd }}$ error FT equivalent level of difficulty Accept an embedded answer for B3 Note: Writing $2 x=-16$ or $-2 x=16$ leading to $x=-8$ is generally from 1 error. Sight of $2 x=44-60$ is regarded as 1 error $60-x=44$ leading to $x=16$ is awarded $B 0, B 1, B 0$ (as level of difficulty is eased)
2(a) Reason to include, without contradiction....... - FreeFlight: fewest complaints - Best2Fly: fewest lost suitcases - GoJet: best arrival on time record	B2	B1 for any 2 correct responses Allow, if respectively, 'complaints', 'suitcases' or 'arrival time' is mentioned uniquely or if mentioned as the positive feature.
2(b) $30000-0.88 \times 30000$ OR 0.12×30000 3600 (flights late)	$\begin{gathered} \hline \text { M1 } \\ \text { A1 } \end{gathered}$	Accept ($1-0.88$) $\times 30000$ If the incorrect airline is selected, award SC1 for either Freeflight or $0.15 \times 30000=4500$ (flights late), or GoJet or $0.08 \times 30000=2400$ (flights late) Do not accept these as unlabelled unsupported answers; need sight of workings or the airline name as sufficient identification
2(c) Use of 0.36 and 0.42 (per 1000 compared)	B1	Use of (0.)36 and (0.)42 in any calculation(s), or sight of 0.06
$500 \times(0.42-0.36)$ OR 500×0.06 OR $500 \times 0.42-500 \times 0.36$ or equivalent	M1	Ignore consistent place value errors for ' 500 thousand passengers', e.g. $21(00)-18(00)$
30 (suitcases)	A1	CAO. ISW If no marks and no working allow SC1 for an answer of 3 or 300 or 3000 or 30000 GoJet and FreeFlight are mentioned twice in the question, hence no MR or SC marks awarded for use of the incorrect airlines
2(d) 8(\%)	B1	Do not accept $8 / 100$ or 0.08 . ISW conversion to fractions or decimals. The answer must be a percentage

\begin{tabular}{|c|c|c|}
\hline 2015 Summer Linear Paper 2
Higher Tier \& \& Comments \\
\hline \begin{tabular}{l}
3. Expect to pay: \\
Standing charge \(3 \times 24.4(0\) euros \() \quad(=73.2\) (0 euros) \\
Cost of electricity \((31008-30256) \times 0.78\) (euros)
\[
=586.56 \text { (euros) }
\] \\
Total bill \(1.12 \times(73.2(0)+586.56)\) (euros) \\
(or \(1.12 \times 659.76\)) \\
738.93(12 euros) \\
Difference 21(.0688 euros)
\end{tabular} \& B1
M1
A1
M2
M

A1

B1 \& | (752 $\times 0.78$) |
| :--- |
| CAO |
| FT 'their non-zero 73.2(0)' (including 24.4(0)) and 'their 586.56 ' provided it was evaluated from a calculation involving ' $\times 0.78$ ' |
| M1 for $0.12 \times(73.2(0)+586.56)$ (euros) |
| CAO. Accept 739 or 738.9 . |
| Do not accept 738 |
| FT 760 - 'their total bill' correctly evaluated, provided at least M1 previously awarded, e.g. FT from omitting the standing charge is allowed provided M1 awarded for the method to calculate the cost of electricity |
| Note: FT from 738 will give an answer of 22 (euros) |

\hline $$
\begin{aligned}
& \text { 4(a)(i) Mid-points 5,6,7,8,9 } \\
& \begin{array}{l}
5 \times 4+6 \times 2+7 \times 0+8 \times 2+9 \times 2 \\
\\
\\
\div 10
\end{array}
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& \hline \text { B1 } \\
& \text { M1 } \\
& \\
& \text { m1 } \\
& \text { A1 }
\end{aligned}
$$

\] \& | FT their mid points including bounds provided they fall within the classes. $20+12+0+16+18(=66)$ |
| :--- |
| Intention their $\sum \mathrm{fx} / 10$ |
| For correct evaluation of their $\sum \mathrm{fx} / 10$ |

\hline 4(a)(ii) Modal class $4.5 \leq r<5.5$ \& B1 \& | Accept ' 4.5 to 5.5 ' or other unambiguous indication of the group |
| :--- |
| Do not accept 5 |

\hline 4(a)(iii) Median $5.5 \leq r<6.5$ \& B1 \& | Accept ' 5.5 to 6.5 ' or other unambiguous indication of the group |
| :--- |
| Do not accept 6 |

\hline 4(b) Correct frequency polygon (for range of data given) \& B2 \& | If B2, penalise -1 if joined to any other point (apart from at $(7,0)$) on horizontal axis other than $(4,0)$ and $(10,0)$ |
| :--- |
| Must be accurate, indication to be on the horizontal grid line and on the vertical grid line |
| B1 if joined with curve or not joined OR one plot incorrect within the polygon OR if translated provided the polygon is at the bounds or within the bounds for the group Ignore frequency diagram as working |

\hline
\end{tabular}

2015 Summer Linear Paper 2 Higher Tier		Comments
$\begin{aligned} & \text { 7. } 3.5 / 4.2=x / 3.36 \text { or equivalent correct statement } \\ & x=2.8(\mathrm{~cm}) \\ & y / 4.2=3.04 / 3.36 \text { or equivalent correct statement } \\ & y=3.8(\mathrm{~cm}) \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	OR appropriate use of scale factor $(\times) 0.8$ (or (\div) 1.25) Do not accept errors from premature approximation OR appropriate use of scale factor $(\div) 0.8$ (or (\times) 1.25) Do not accept errors from premature approximation Accept unlabelled answers if given unambiguously
$\begin{array}{ll} \hline \text { 8(a) } \quad \mathrm{k}^{2}=\mathrm{m} / 3 \\ & \mathrm{k}=(\pm) \sqrt{m / 3} \end{array}$	$\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \end{aligned}$	Clearly must show square root of $\mathrm{m} / 3$ entirely FT from 1 error, e.g. $\mathrm{k}^{2}=\mathrm{m}-3$ to give $\mathrm{k}=(\pm) \sqrt{m-3}(\mathrm{~B} 0, \mathrm{~B} 1)$ or $3 \mathrm{k}=\sqrt{\mathrm{m}}$ to give $\mathrm{k}=(\pm) \sqrt{\mathrm{m}} / 3(\mathrm{~B} 0, \mathrm{~B} 1)$
$\begin{aligned} 8(b) \quad \begin{aligned} \mathrm{g}(\mathrm{e}+\mathrm{f}) & =\mathrm{h} \\ \mathrm{~g} & =\underline{\mathrm{h}} \\ \mathrm{e} & +\mathrm{f} \end{aligned} \quad \text { OR } \quad \mathrm{e}+\mathrm{f}=\mathrm{h} / \mathrm{g} \\ \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	Factorise FT from 1 error provided equivalent difficulty (not single term denominator), e.g. from incorrectly factorising as $2 \mathrm{~g}(\mathrm{e}+\mathrm{f})=\mathrm{h}$ to give a response $\mathrm{g}=\mathrm{h} / 2(\mathrm{e}+\mathrm{f})$ is awarded B 0 , B 1
9. 1.3×10^{7}	B1	CAO
10. Sight of 31450, 31550, 45.5 and 46.5	B1	Accept 46.49 or 31549.9 Do not accept 46.49 or 31549.9
Least 31450/46.5	M1	Must be clearly their least FT $31400 \leq$ numerator <31500 FT $\quad 46<$ denominator ≤ 47
(Least number of hours is) 676 ISW	A1	CAO from correct calculation. Must be whole number of hours
Greatest 31550/45.5	M1	Must be clearly their greatest FT $31500<$ numerator ≤ 31600 FT $\quad 45 \leq$ denominator <46
(Greatest number of hours is) 693 ISW	A1	CAO from correct calculation Must be whole number of hours If both A0 due to not to the nearest hour, then also allow SClfor 676.344 ... and 693.406... rounded or truncated
11(a) 0.2 indicated for no soup Idea $0.8 \times \ldots=0.32$ $\mathrm{P}($ buys an apple $)=0.4$ Second branches $0.4 \quad 0.6 \quad 0.40 .6$	$\begin{aligned} & \hline \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { B1 } \end{aligned}$	In working or on tree In working or on tree FT from their P (buys an apple) if M1 awarded
$\text { 11(b) } 0.2 \times 0.6 \quad=0.12$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	FT 'their 0.6 ' from their lowest $2^{\text {nd }}$ branch in (a)
$\text { 12(a)(i) } 180-90-74 / 253\left({ }^{\circ}\right)$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \end{aligned}$	Indication of a complete correct method Ignore a slip in notation, e.g. $90+37=53$, award M1, A1
$\text { 12(a)(ii) }(180-53) \div 2 \quad 63.5\left({ }^{\circ}\right)$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	Indication of a complete correct method. FT 'their 53' Accept $64\left(^{\circ}\right)$ from correct working
12(a)(iii) $127\left({ }^{\circ}\right.$)	B1	FT $2 \times^{\prime}$ their $63.5{ }^{\prime}$ or $180^{\circ}-{ }^{\text {'their }} 53^{\circ}$

\begin{tabular}{|c|c|c|}
\hline 2015 Summer Linear Paper 2 Higher Tier \& \& Comments

\hline $$
\begin{aligned}
& 12(\mathrm{~b}) \mathrm{AT}(\text { or BT })=8 / \tan \left(74^{\circ} / 2\right) \\
& \text { or AT }(\text { or BT })=8 \times \tan 53^{\circ} \\
& \text { or AT }(\text { or BT })=8 \times \tan \left(90^{\circ}-74^{\circ} / 2\right) \\
& \text { or AT }(\text { or BT })=8 \times \sin 53^{\circ} / \sin 37^{\circ} \\
& \text { or AT }(\text { or BT })=8 \times \sin \left(90^{\circ}-74^{\circ} / 2\right) / \sin 37^{\circ} \\
& \\
& \\
& \\
& \text { Perimeter of TAOB is } 37.2(327 \ldots . . \mathrm{cm})
\end{aligned}
$$ \& M2

A1

A1 \& | M1for $\tan \left(74^{\circ} / 2\right)=8 /$ AT OR $\tan \left(74^{\circ} / 2\right)=8 /$ BT or $\frac{\mathrm{AT}(\text { or BT) }}{\sin 53^{\circ}}=\underline{8} \sin 37^{\circ}$ |
| :--- |
| or $\tan 53^{\circ}=\mathrm{AT}($ or BT $) / 8$ OR $\tan \left(90^{\circ}-74^{\circ} / 2\right)=\mathrm{AT}($ or BT $) / 8$ |
| Alternative: |
| $O T / \sin 90^{\circ}=8 / \sin \left(74^{\circ} / 2\right)$ followed by $A T^{2}$ or $B T^{2}=O T^{2}-8^{2}$ $M 2$ |
| (M1 for 1 rearrangement error in either sine rule or Pythagoras' Theorem) |
| Do not accept other answers from premature approximation, their response must be such that it would round to $10.6(\mathrm{~cm})$ |
| FT $2 \times$ 'their $10.6^{\prime}+16$ evaluated correctly provided at least M1 awarded |

\hline 13. Any two lines drawn correctly Correct region identified \& $$
\begin{aligned}
& \mathrm{B} 2 \\
& \mathrm{~B} 1
\end{aligned}
$$ \& B1 for any 1 line drawn correctly CAO

\hline 14.(a) Sight of $x(2 x+6)$ or equivalent Convincing $2 x^{2}+6 x-59=0$ \& \[
$$
\begin{aligned}
& \hline \text { B1 } \\
& \text { B1 }
\end{aligned}
$$

\] \& | Including within an equation $x(2 x+6)=59$ |
| :--- |
| Must be from of $x(2 x+6)=59$ or $2 x^{2}+6 x=59$ |

\hline 14(b)(i)Substitution into quadratic formula, allow 1 slip

$$
\begin{aligned}
& (x=) \frac{-6 \pm \sqrt{ }\left(6^{2}-4 \times 2 \times-59\right)}{2 \times 2} \\
& (x=) \frac{-6 \pm \sqrt{ } 508}{4} \\
& (x=) 4.13 \text { with }-7.13
\end{aligned}
$$ \& M1

A1

A1 \& | Must be correct formula |
| :--- |
| Must be 2 d.p. |
| Only accept a trial \& improvement if both solutions are found: |
| Correctly evaluated trials that could lead to a positive and a negative solution |
| Refinement of trials to 3 decimals places to confirm both solutions |
| $(x=) 4.13$ with -7.13 |

\hline | 14(b)(ii) Volume 4.13(47...) $\times 14.26(94) \times 1.13(47)$ or $59 \times 1.13(47 \ldots)$ |
| :--- |
| Answers in the range 66.5 to 67 cm^{3} | \& M1

A1

U1 \& | FT 'their derived 4.13(47...)' from a value that must be >3 given in a response in (b)(i) |
| :--- |
| CAO. With no other answer (e.g. negative volume). |
| Unsupported or from appropriate working |
| Mark final answer |
| Independent mark |

\hline \[
$$
\begin{aligned}
& 15.1 / 2 \times 7.3 \times \mathrm{BD} \times \sin 42^{\circ}=16.2 \\
& \mathrm{BD}=6.6(3301 \ldots \mathrm{~cm}) \\
& \sin \mathrm{C} / \mathrm{BD}=\sin 28^{\circ} / 3.6 \text { or } \mathrm{BD} / \operatorname{sinC}=3.6 / \sin 28^{\circ} \\
& \sin \mathrm{C}=\mathrm{BD} \times \sin 28^{\circ} / 3.6 \\
& \hat{\mathrm{C}} \text { in the range } 59.39\left(^{\circ}\right) \text { to } 59.88 \ldots\left(^{\circ}\right) \text { or } 59.9\left(^{\circ}\right)
\end{aligned}
$$

\] \& | M1 |
| :--- |
| A2 |
| M1 |
| M1 |
| A1 | \& | A 1 for $\mathrm{BD}=16.2 /\left(1 / 2 \times 7.3 \times \sin 42^{\circ}\right)$ |
| :--- |
| Must show a substitution for BD |
| FT 'their derived BD', must be from working, not spurious |
| Must show a substitution for BD |
| OR $\sin \mathrm{C}=0.865 \ldots$. |
| CAO, accepting $59\left({ }^{\circ}\right)$ or $60\left({ }^{\circ}\right)$ from appropriate working. |

\hline | 16(a) Sin curve, through the origin |
| :--- |
| Correct sketch, with ± 1 shown on the vertical axis and clearly y $=0$ shown at $0^{\circ}, 180^{\circ} \& 360^{\circ}$ implied correctly | \& M1

A1 \& | Accept 180° as mid-way between 0° and 360° if unlabelled Accept 360° as unlabelled provided the sketch does not exceed 360° |
| :--- |
| ± 1 must be both shown on the vertical axis |

\hline
\end{tabular}

2015 Summer Linear Paper 2 Higher Tier		Comments

WJEC

245 Western Avenue
Cardiff CF5 2YX
Tel No 02920265000
Fax 02920575994
E-mail: exams@wjec.co.uk
website: www.wjec.co.uk

