GCSE MARKING SCHEME

MATHEMATICS - LINEAR

SUMMER 2014

INTRODUCTION

The marking schemes which follow were those used by WJEC for the Summer 2014 examination in GCSE MATHEMATICS - LINEAR. They were finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conferences were held shortly after the papers were taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conferences was to ensure that the marking schemes were interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conferences, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about these marking schemes.
Paper 1 - Foundation Tier 1
Paper 1 - Higher Tier 6
Paper 2 - Foundation Tier 12
Paper 2 - Higher Tier 17

PAPER 1 - FOUNDATION TIER

Summer 2014 Paper 1 (Non calculator) Foundation Tier	Marks	Comments
1. (a) (i) 3411002	B1	
1. (a) (ii) seventy two thousand (no hundreds) (and) sixty five	B1	
1. (b) (i) 17 and 63	B1	B0 for 40+40.
1. (b) (ii) 39	B1	
1. (b) (iii) 63	B1	
1. (b) (iv) 6	B1	Allow $48 / 8=6,6 \times 8=48$ but B0 for 48/6 $=8$
1. (b) (v) 81	B1	
1. (c) 12 or 16	B1	For 12, 16 or both. Allow 12×8 OR 16×6 As always, $B 0$ for a choice of answers with at least one answer incorrect
1. (d) (i) 6570	B1	
1. (d) (ii) 6600	B1	
2. (a) (i) 7652	B1	
2. (a) (ii) 2576	B1	
2. (b) (i) (0) $\cdot 06$	B1	
2. (b) (ii) 2.92	B1	
$\begin{aligned} & \text { 2. (c) } 2 \cdot 9 \times 100 \text { OR } 3 \times 98 \text { OR } 3 \times 100 \\ & =290 \text { OR } 294 \text { OR } 300 \end{aligned}$	$\begin{gathered} \hline \text { M1 } \\ \text { A1 } \end{gathered}$	Only these three estimates. M1,A1 for unsupported answers of 290, 294 OR 300
$\begin{aligned} & \text { 3. Hours }=20 \times 15 \text { (minutes) } 20 \times 1 / 4 \text { (hours) } \\ & =300 \text { (minutes) }=5 \text { (hours) } \\ & \text { Payment }=8 \times 5+12 \\ & =(£) 52 \end{aligned}$	$\begin{gathered} \hline \checkmark \\ \text { M1 } \\ \text { A1 } \\ \text { M1 } \\ \text { A1 } \end{gathered}$	Special cases Candidates who do F.T. 'theirs' not required at this stage' (must be an attempt to convert to hours). $8 \times 20+12$ get SC1 for the (£)172 Similarly $\mathbf{S C 1}$ for $\mathbf{(£) 1 3 2 \text { from } \mathbf { 8 \times 1 5 } + \mathbf { 1 2 }}$
Look for - spelling - clarity of text explanations, - the use of $£ \mathrm{~s}$, hours and minutes QWC2: Candidates will be expected to - present work clearly, with words explaining process or steps AND - make few if any mistakes in mathematical form, spelling, punctuation and grammar and include units in their final answer QWC1: Candidates will be expected to - present work clearly, with words explaining process or steps OR - make few if any mistakes in mathematical form, spelling, punctuation and grammar and include units in their final answer	$\begin{gathered} \text { QWC } \\ 2 \end{gathered}$	QWC2 Presents relevant material in a coherent and logical manner, using acceptable mathematical form, and with few if any errors in spelling, punctuation and grammar. QWC1 Presents relevant material in a coherent and logical manner but with some errors in use of mathematical form, spelling, punctuation or grammar. OR Evident weaknesses in organisation of material but using acceptable mathematical form, with few if any errors in spelling, punctuation and grammar. QWC0 Evident weaknesses in organisation of material, and errors in use of mathematical form, spelling

Summer 2014 Paper 1 (Non calculator) Foundation Tier	Marks	Comments
11. (a)	B2	B1 for 3 or more correct lines drawn AND no incorrect lines.
11. (b)	B2	B1 for each of 1st and 3rd quadrants
$\begin{aligned} & \text { 12. }(3 / 8)=8) 3.000 \\ & \underline{(0) . \mathbf{3 7 5} \text { ISW }} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	Any valid method. Must show a division method being implemented M0, A0 for unsupported (0). 38
 (ii) $\frac{6}{16}$ of 400 $=150$	B2 B2 M1 A1	B1 for at least 3 correct entries F.T. their table B1 for a numerator of 6 in a fraction less than 1. B1 for a denominator of 16 in a fraction less than 1. Penalise $\mathbf{- 1}$ once only for wrong notation, e.g. 6 out of 16 OR 6:16 F.T. their (b)(i) if a fraction less than 1. $(\neq \mathbf{1} / \mathbf{2})$ M1,A0 for $8 / 16$ of 400 if it is F.T. from their table 150 out of 400 gets the M1, A1 but 150/400 gets M1, A0. A0 if using an incorrect reduction of the fraction from (b)(i)
$\begin{aligned} & \text { To be viewed with diagram } \\ & \text { 14. }(\mathrm{a})(\mathrm{x}=) 180-53-53 \\ & =74\left({ }^{\circ}\right) \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	
$\begin{aligned} & \text { To be viewed with diagram } \\ & \text { 14. (b) } 360-(112+67+78) \text { OR } 360-257 \\ & 103\left({ }^{\circ}\right) \\ & (y=) 77\left({ }^{\circ}\right) \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ \text { B1 } \end{gathered}$	$\mathrm{y}=103\left({ }^{\circ}\right)$ as final answer gets M1,A1,B0 FT $180-$ 'their 103' $\underline{\mathbf{G e n e r a l} \text { principle }}$ $\underline{\mathbf{2 5 7}-\mathbf{3 6 0}=\mathbf{1 0 3} \text { gets M1,A1 }}$

Questions 15-21 except 19(a) are common with the Higher Tier.

This Mark Scheme will be amended to match the Higher Tier throughout the conference.

\begin{tabular}{|c|c|c|}
\hline Summer 2014 Paper 1 (Non calculator) Foundation Tier \& Marks \& Comments \\
\hline \begin{tabular}{l}
To be viewed with diagram \\
20. An appropriate angle \(180-\mathrm{a}-\mathrm{b}\) or \(180-(\mathrm{a}+\mathrm{b})\), or an appropriate b or c angle indicated on the diagram
\[
\begin{aligned}
\& \frac{(\mathbf{c}=)}{(c=)} 180-(180-\mathrm{a}-\mathrm{b}) \\
\& \underline{(\mathbf{c}=\mathrm{b}}
\end{aligned}
\]
\end{tabular} \& B1 \& \begin{tabular}{l}
Must be shown or stated \\
Or equivalent rearrangement, e.g. \(\mathrm{a}+\mathrm{b}+180-\mathrm{c}=180\) \\
For answer only (\(\mathrm{c}=\)) \(\mathrm{a}+\mathrm{b}\) without working or indication of any appropriate b or c angles award B0, M1 and A1. \\
For answer \((\mathrm{c}=) \mathrm{a}+\mathrm{b}\) with working or indication of any appropriate b or c angles award \(\mathrm{B} 1, \mathrm{M} 1\) and A 1 .
\end{tabular} \\
\hline \begin{tabular}{l}
21. 12 sided shape: exterior angle \(360 / 12\left(=30^{\circ}\right)\) interior angle \(\left(180^{\circ}-30^{\circ}=\right) 150\left({ }^{\circ}\right)\) OR sketch showing one \(30^{\circ}\) exterior angles, e.g. \\
Gap is \(360-150-150\) OR sketch implying the sum of the 2 angles of \(30^{\circ}\) is the remaining exterior angle, e.g. \\
Appropriate \(\left.60^{\circ}\right)\) or sketch showing \(60^{\circ}\) e.g. \\
Third shape: 3 (sides)
\end{tabular} \& B1
B1

M1
M

A1

A1 \& | OR M1 Interior $10 \times 180 \div 12$ |
| :--- |
| A1 $=150\left({ }^{\circ}\right)$ |
| OR B2 for interior angle found to be $150\left(^{\circ}\right)$ |
| FT for use of 'their 150 ' |
| CAO. Allow (equilateral) triangle |
| If correct answer with sight of angles: |
| Sight of $150\left(^{\circ}\right.$) or $30\left({ }^{\circ}\right)$ AND 60° followed by an answer 3 (sides) or triangle is awarded 5 marks |
| or |
| Sight of $150\left(^{\circ}\right)$ or $30\left(^{\circ}\right)$ followed by an answer 3 (sides) or triangle is awarded 4 marks only (as working is incomplete) |
| or |
| Sight of $360\left(^{\circ}\right) / 12$ followed by an answer 3 (sides) or triangle is awarded 3 marks only (as working is incomplete) |
| OR if no working or errors in calculations: |
| Award SC2 for an answer of $\mathbf{3}$ sides or(equilateral) triangle. |
| OR |
| Award SC2 for a diagram of a tessellation of a number of sides of two 12-sided polygons showing a triangle. |
| Award SC1 for a diagram of an attempt at a tessellation of a number of sides of two 12-sided polygons showing a triangle. |

\hline
\end{tabular}

PAPER 1 - HIGHER TIER

Summer 2014 Paper 1 Higher Tier	Marks	Comments
1(a) 3 values which could lead to simple calculations Correct evaluation for their figures	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	e.g. $\frac{43.3 \times 50}{200}, \frac{40 \times 49.8}{200}$ Do not accept $\frac{43 \times 49}{200}$ Accept decimals OR rounded or truncated answers (Common responses include10 here)
1(b) 2	B1	Accept other reasonable estimations, with answer given to no more than 2dp Allow 2/1
1(c)(i) 3.9528	B1	
1(c) (ii) 73200	B1	
1(d) $7 / 2 \times 1 / 2$ OR $7 / 2 \div 2$ OR sight of $3 / 2+1 / 4$ $13 / 4$ or 1.75 or $7 / 4$ or single value equivalent	$\begin{gathered} \hline \text { M1 } \\ \text { A1 } \end{gathered}$	$\begin{aligned} & \text { e.g. } 1.5+0.25 \\ & \text { CAO } \end{aligned}$
2(a) All points plotted correctly	B2	Intention: closer to the correct intersection than to any others B1 for indication of at least 3 correct points Penalise joining point to point -1
2(b) Positive	B1	Do not accept descriptions
2(c) Line of best fit with points above and below	B1	The line must be fit for purpose, it should not pass through the intersection of the axes Ignore also joining point to point
2(d) Their estimate, from use of their line of best fit, or an answer in inclusive interval $390 \leq$ 'their estimate' ≤ 410	B1	Accuracy to the nearest $£ 10$ FT for their incorrect line of best fit with accuracy to the nearest $£ 10$
2(e) Explanation, that it doesn't tell you, e.g. 'only know how many attend, not how many spent money on ice cream', or 'don't know how many ice creams were sold'	E1	Ignore incorrect statements given with a correct response. Accept answers that state or imply, don't know: - how many ice cream sold, or - how many people bought ice cream Allow answers that state or imply, don't know: - different costs of ice cream (days or ice creams) e.g. accept 'different ice creams cost different amounts', 'don't know who bought what', 'sellers change prices on different days'
3(a) (-1, 4) and (-7, -2) and (-1, 0)	B2	All 3 coordinates correct B1 for any 2 of these 3 coordinates correct If no marks SClfor correct quadrilateral shown Coordinates can be given in any order in the answer space. No marks for reversed coordinates. However award SC1 for showing the correct points in the quadrilateral
3 (b) (2, 1) and (4,5) and (-1,5) and (7, 1)	B2	All 4 coordinates correct B1 for any 3 of these 4 coordinates correct If no marks SClfor correct quadrilateral shown Coordinates can be given in any order in the answer space. No marks for reversed coordinates. However award SC1 for showing the correct points in the quadrilateral

Summer 2014 Paper 1 Higher Tier	Marks	Comments
```4. Area trapezium \(=1 / 2 \times 5 \times(6+10)\) \(=40\left(\mathrm{~cm}^{2}\right)\) Triangle: \(1 / 2 \times 10 \times x=40\) \((\mathrm{x}=) 8(\mathrm{~cm})\)```	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	For equating 'their 40 ' (any value) with $1 / 2 \times 10 \times \mathrm{x}$ FT correct evaluation from 'their 40' (their value) SC2 for an answer $8(\mathrm{~cm})$ from a two stage method:   Area trapezium $5 \times(6+10)=80$ followed by area triangle $10 \times x=80$, or   SC1 for a 2 stage method equating $10 \times x$ with $5 \times(6+10)$ with error in calculating $x$   A full one stage method $10 \times x=5 \times(6+10)$ is correct
5. Class A has 12 girls Class B has 18 girls   There are twice as many girls as boys in class B, or $1 / 3$ of class B boys, or $2 / 3$ of class B girls   Class B has 9 boys	B1   B1   B1   B1	FT $1 \frac{1}{2} \times$ 'their 12 ' correctly evaluated (but NOT $1 \frac{1}{2} \times 4$ ) Sight of 18 implies first B1, B1 OR Class B: Angle girls $240^{\circ} \pm 2^{\circ}$ and angle boys $120^{\circ} \pm 2^{\circ}$ This may be implied from their numbers of girls and boys in class B   Note: $1 / 3$ of 18 does not imply $1 / 3$ of class $B$ boys, hence B0 ' 18 is ${ }^{2 / 3}$ ', implies B1 CAO
$\begin{gathered} 6(\mathrm{a}) 6 \mathrm{x}-4 \mathrm{x}=27-13 \\ 2 \mathrm{x}=14 \\ \mathrm{x}=7 \end{gathered}$	$\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$	FT until $2^{\text {nd }}$ error, then stop marking   Must be simplified if possible for this final B1 mark
6(b) $\begin{array}{cc}\mathrm{x} / 2=26-18 \\ & \mathrm{x}=16\end{array}$ OR $\mathrm{x}+18 \times 2=26 \times 2$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	OR alternative full correct method   Mark final answer   Accept embedded answer, e.g. $16 / 2+18=26$
6(c) $\mathrm{y}(\mathrm{y}-5)$	B1	
6(d) $\mathrm{y}^{3}+4 \mathrm{y}$	B2	B1 a correct term. Mark final answer
	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	Do not accept ' $=$ '   FT from 1 error only. Mark final answer If ' $=$ ' used but replaced by '<' to give final correct answer, allow B2
7.   $\mathrm{n}^{2}$ or equivalent (black)   $2 \mathrm{n}+1$ or equivalent (white)	$\begin{gathered} \text { B1 } \\ \text { B2 } \\ 3 \end{gathered}$	Accept use of N   B1 for 2n or equivalent   Penalise use of other letters -1 only


Summer 2014 Paper 1 Higher Tier	Marks	Comments
8. An appropriate angle $180-\mathrm{a}-\mathrm{b}$ or $180-(\mathrm{a}+\mathrm{b})$, or an appropriate b or c angle indicated on the diagram $\begin{aligned} & (\mathrm{c}=) 180-(180-\mathrm{a}-\mathrm{b}) \\ & (\mathrm{c}=) \mathrm{a}+\mathrm{b} \end{aligned}$	B1   M1   A1	Must be shown or stated   OR   Or equivalent rearrangement, e.g. $\mathrm{a}+\mathrm{b}+180-\mathrm{c}=180$   For answer only ( $\mathrm{c}=$ ) $\mathrm{a}+\mathrm{b}$ without (or incorrect)_working or indication of any appropriate b or c angles award B0, M1 and A1.   For answer $(\mathrm{c}=) \mathrm{a}+\mathrm{b}$ with working or indication of any appropriate b or c angles award B1, M1 and A1.
9(a) (Millet) $3 \times 850 / 10 \quad 255(\mathrm{~g})$	$\begin{gathered} \hline \text { M1 } \\ \text { A1 } \end{gathered}$	CAO


Summer 2014 Paper 1 Higher Tier	Marks	Comments			
9(b)Attempt to find unit cost e.g. for 1 kg   (For the 250 g bag, 1 kg costs) $£ 1.96$   (For the 300 g bag, 1 kg costs) $£ 1.80$   (For the 4 kg bag, 1 kg costs) $£ 1.90$	B1	OR for one correct costing for 5 kg e.g. (£)7(.)60 $+4 \times 49(p)=(£) 9()$.   OR At least 2 combinations of bags to a total of 5 kg			
Considering buying 10 or more 300 g bags	S1	OR any 2 correct costings for buying 5 kg OR stating any 3 possible combinations of bags to 5 kg			
		250 g	300 g	4 kg	Cost $£$
		4	0	1	$1.96+7.60=9.56$
		20	0	0	9.80
		14	5	0	$6.86+2.70=9.56$
		8	10	0	$3.92+5.40=9.32$
		2	15	0	$0.98+8.10=9.08$
Working with or choice of 15 of the 300 g bags, or $5000 \div 300$ with an answer of $16(.666 \ldots), 17$ or 16 , or trials including 15 or 16 or 17 of the 300 g bags	M1	OR equivalent, e.g. repeated additions or multiples,			
$\begin{aligned} & \text { (Cheapest way to buy } 5 \mathrm{~kg} \text { is } \\ & 15(300 \mathrm{~g} \text { bags) at } 54(\mathrm{p})+2(250 \mathrm{~g} \text { bag) at } 49(\mathrm{p}) \\ & =(£) 8(.) 10+98(\mathrm{p})) \end{aligned}$	A1				
Look for   - correct units used   - spelling in at least 1 statement/sentence   - clarity of text explanations   - clearly linking working with size of bag		QWC2 Presents relevant material in a coherent and logical manner, using acceptable mathematical form, and with few if any errors in spelling, punctuation and grammar.			
QWC2: Candidates will be expected to   - present work clearly, with words or quantities shown for clarity of process or steps		QWC1 Presents relevant material in a coherent and logical manner but with some errors in use of mathematical form, spelling, punctuation or grammar OR			
AND   - make few if any mistakes in mathematical form, spelling, punctuation and grammar in their answer	$\begin{gathered} \text { QWC } \\ 2 \end{gathered}$	evident weaknesses in organisation of material but using acceptable mathematical form, with few if any errors in spelling, punctuation and grammar.			
QWC1: Candidates will be expected to   - present work clearly, with words or quantities shown for clarity of process or steps		QWC0 Evident weaknesses in organisation of material, and errors in use of mathematical form, spelling, punctuation or grammar.			
OR   - make few if any mistakes in mathematical form, spelling, punctuation and grammar in their answer					

\begin{tabular}{|c|c|c|}
\hline Summer 2014 Paper 1 Higher Tier \& Marks \& Comments \\
\hline \begin{tabular}{l}
10. 12 sided shape: exterior angle \(360 / 12\left(=30^{\circ}\right)\) interior angle \(\left(180^{\circ}-30^{\circ}=\right) 150\left({ }^{\circ}\right)\) OR sketch showing one \(30^{\circ}\) exterior angles, e.g. \\
Gap is \(360-150-150\) OR sketch implying the sum of the 2 angles of \(30^{\circ}\) is the remaining exterior angle, e.g. \\
Appropriate \(60\left({ }^{\circ}\right)\) or sketch showing \(60^{\circ}\) e.g. \\
Third shape: 3 (sides)
\end{tabular} \& B1
B1

M1

A1

A1 \& | OR M1 Interior $10 \times 180 \div 12$ |
| :--- |
| A1 $=150\left({ }^{\circ}\right)$ |
| OR B2 for interior angle found to be $150\left({ }^{\circ}\right)$ |
| FT for use of 'their 150 ' |
| CAO. Allow (equilateral) triangle |
| If correct answer with sight of angles: |
| Sight of $150\left(^{\circ}\right.$ ) or $30\left(^{\circ}\right.$ ) AND $60^{\circ}$ followed by an answer 3 (sides) or triangle is awarded 5 marks |
| or |
| Sight of $150\left(^{\circ}\right.$ ) or $30\left(^{\circ}\right)$ followed by an answer 3 (sides) or triangle is awarded 4 marks only (as working is incomplete) |
| or |
| Sight of $360\left(^{\circ}\right) / 12$ followed by an answer 3 (sides) or triangle is awarded 3 marks only (as working is incomplete) |
| OR if no working or errors in calculations: |
| $\overline{A w}$ ard SC2 for an answer of $\mathbf{3}$ sides or(equilateral) |
| triangle. |
| OR |
| Award SC2 for a diagram of a tessellation of a number of sides of two 12-sided polygons showing a triangle. |
| Award SC1 for a diagram of an attempt at a tessellation of a number of sides of two 12-sided polygons showing a triangle. | <br>

\hline | 11. Equations $2 \mathrm{~b}+3 \mathrm{~s}=2()$.04 and $4 \mathrm{~b}+(1) \mathrm{s}=2()$. Method, equating coefficients or alternative |
| :--- |
| First variable correct |
| Method to find second variable |
| Second variable correct | \& | S1 |
| :--- |
| M1 |
| A1 |
| m1 |
| A1 | \& | Accept other variables Allow 1 slip, but not in equated coefficients FT their equations in 2 variables provided at least 1 equation is correct |
| :--- |
| Blackcurrant 54(p) or (£)0.54 |
| Soda water 32(p) or (£)0.32 |
| Do not accept trial \& improvement, maximum mark S1 | <br>

\hline 12(a) $3(6+x)+2(2-3 x)=31 \quad$ or equivalent

\[
$$
\begin{aligned}
-3 \mathrm{x}+22 & =31 \\
\mathrm{x} & =-3
\end{aligned}
$$

\] \& | M2 |
| :--- |
| A1 |
| A1 | \& M1 for 2 of these 3 terms correct e.g. $3(6+x)+2(2-3 x)=31 / 6$, or for $\frac{3(6+x)}{6}+\frac{2(2-3 x)}{6}=\frac{31}{6}$ or equivalent FT from M1 for A1 only CAO (Must be simplified) <br>

\hline 12(b) $2(\mathrm{x}+3)(\mathrm{x}+1)$ \& B2 \& $$
\begin{array}{cccc}
\hline \text { B1 for } 2(x+3)(x+3-2) & \text { or } & (2 x+6)(x+1) & \text { or } \\
(x+3)(2 x+2) & \text { or } & 2\left(x^{2}+4 x+3\right) \\
\hline
\end{array}
$$ <br>

\hline 13(a) $8 \times 8+1 / 2 \times \pi \times 4^{2}$

$$
64+8 \pi \quad \text { OR } \quad 8(8+\pi)\left(\mathrm{cm}^{2}\right)
$$ \& \[

$$
\begin{gathered}
\text { M1 } \\
\text { A1 }
\end{gathered}
$$

\] \& | Accept with a value inserted for $\pi$ ISW. Must be an expression in terms of $\pi$ If no marks, SC1 for final answer: |
| :--- |
| - use of radius 8 giving $64+32 \pi$, or |
| - full circle included giving $64+16 \pi$ | <br>

\hline 13(b) 1 \& B1 \& <br>
\hline 13(c) $5 \times 10^{-5}$ \& B2 \& B1 for 0.00005 or $0.5 \times 10^{-4}$ or $0.05 \times 10^{-3}$ or similar form <br>
\hline
\end{tabular}

Summer 2014 Paper 1   Higher Tier				Marks	Comments
14(a)(i) 2950 (miles)   3050 (miles)   79.5 (hours) or $791 / 2$ (hours) or 79 h 30 min   80.5 (hours) or $801 / 2$ (hours) or 80 h 30 min				B2	All 4 correct entries   B1 for any 2 correct entries   Do not accept 79.3 or 80.3 as 2 correct entries, allow this as equivalent to counting 1 correct entry
14(a)(ii) $3050 \div 79.5$				B1	FT their greatest distance divided by their least time, provided distance >3000 and time < 80   Accept sight of $\frac{3050}{79.5}$
$\text { 14(b) }(59+x) \div(2+y) \text { or } \frac{59+x}{2+y}$ or equivalent unsimplified				B2	OR equivalent with use of minutes, e.g. $59+\mathrm{x}$ $120+60 y$   B1 for intention clear but any necessary brackets omitted, or for $\frac{59.5+x}{2+y}$ or $\frac{60+x}{2+y}$ or $\frac{59.5+x}{120+60 y}$ or $\frac{60+x}{120+60 y}$   SC1 for sight of 59.5 AND $x-0.5$, or for sight of $59+x$.
15 . Volume scale factor $\times 27$   Length scale factor $\times 3$   Number of larger pebbles needed $(15 / 3=) 5$				B1   B1 B1	Allow for sight of $54 / 2$ or 27 provided not connected to irrelevant working   Accept ${ }_{3} \sqrt{ } 27$. Allow for sight of 3 provided not connected to irrelevant working Award of the $2^{\text {nd }} \mathrm{B} 1$ implies also the $1^{\text {st }} \mathrm{B} 1$   SC2 only for an answer of 5 without relevant working
16(a)(i) 0.021				B1	
16(a)(ii) 0.05				B2	B1 for 1/20
$\begin{array}{cc} \hline \text { 16(b) } & 0.12 \end{array}$				B2	Accept $0.1212 \ldots$ or dots as for recurring notation Otherwise B1 for 0.12(1...)
16(c) $35 \sqrt{2}$				B2	B1 for $\sqrt{70}=\sqrt{ } 2 \times \sqrt{ } 35$ seen or implied, OR $7 \sqrt{ } 5 \sqrt{ } 10$ or $5 \sqrt{ } 7 \sqrt{ } 14$
$\begin{gathered} \text { 17(a) } \mathrm{y} \alpha 1 / \mathrm{x} \text { OR } \mathrm{y}=\mathrm{k} / \mathrm{x} \\ 50=\mathrm{k} / 2 \\ \mathrm{y}=100 / \mathrm{x} \end{gathered}$				$\begin{aligned} & \hline \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	FT non linear only   Maybe implied in part (b)
$17(\mathrm{~b})$	$\begin{gathered} \hline 1 / 2 \\ \hline 200 \\ \hline \end{gathered}$	$\begin{gathered} \hline 2 \\ \hline 50 \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathbf{8} \\ \hline 12.5 \\ \hline \end{gathered}$	B2	FT their non linear expression B1 for each value
18(a) Axis labelled frequency density with a uniform scale from 0 to 5 (minimum)   Frequency densities 1.8, 2.2, 5, 0.6, 0.2   Correct histogram				B1   M2   A1	Do not accept a scale using less than half the paper or for scales to $\geq 100$   FT for their uniform scale M1 for any 3 correct frequency densities
18(b) Explanation:   - Median is in the group $40<t \leq 60$   - Estimate so we don't know, or   - (Estimate of the) median is 44 , or   - It (may be) is nearer 40 than 60				$\begin{aligned} & \text { E1 } \\ & \text { E1 } \end{aligned}$	Each E mark is independent.   Accept 'median is in same group'   Accept 'median could be towards the lower end of the median group'.
				S1   M1   A1   A1	Allow selection with replacement for S1 only

PAPER 2 - FOUNDATION TIER

Summer 2014 Paper 2 (Calculator allowed) Foundation Tier	Marks	Comments
	B1   B1   B1   B1   M1   A1	For the 3   F.T. unless both 7.44 AND 3.44 are incorrect An answer of 15.5 only gets 4 only if ALL answers are correct   F.T. their total Any complete correct method for finding $20 \%$. If (£)3.1(0) not given then (£) 12.4(0) gains M1 A1   $3.1 \%$ OR 3.1 p OR $£ 3.1$ p get $\mathrm{M} 1, \mathrm{~A} 0$ but condone $£ 3.1$
2.      170 km $170 \mathrm{~m} \mathrm{l70mm}$ 170 cm    28 kg $28 \mathrm{~g} \quad 28 \mathrm{mg}$ 280 g    $60 \mathrm{~cm}^{3}$ 600 ml 60 litres 6000 litres   $18 \mathrm{~m}^{2}$ $18 \mathrm{~cm}^{2}$ $18 \mathrm{~mm}^{2}$ $18 \mathrm{~cm}^{3}$	B1   B1   B1   B1	Tick marked question
To be viewed with diagram   Parts (a) \& (b) marked at the same time   3. (a) Pointer showing 320 g   3. (b) Reading 620 (g)	B2 B1	B1 if calculation shown and F.T. their pointer. OR B1 for sight of 320 in the working but nothing on their diagram OR 260 shown on their diagram. Pointer drawn takes precedence over written value(s) Pointer nearer correct mark than the ones each side of it
One cube weighs (620-320)/5 $=60(\mathrm{~g})$	M1 A1	Complete method, subtraction and division   FT 'their 620 and 320 '   Allow B1, SC1 for $620 / 5=124$ (g)   Unsupported 124 (g) gets M0,A0
Look for   - spelling   - clarity of text explanations,   - the use of notation (watch for the use of ' $=$ ', g)   QWC2: Candidates will be expected to   - present work clearly, with words explaining process or steps   AND   - make few if any mistakes in mathematical form, spelling, punctuation and grammar and include units in their final answer   QWC1: Candidates will be expected to   - present work clearly, with words explaining process or steps   OR   - make few if any mistakes in mathematical form, spelling, punctuation and grammar and include units in their final answer	$\begin{gathered} \text { QWC } \\ 2 \end{gathered}$	QWC2 Presents relevant material in a coherent and logical manner, using acceptable mathematical form, and with few if any errors in spelling, punctuation and grammar.   QWC1 Presents relevant material in a coherent and logical manner but with some errors in use of mathematical form, spelling, punctuation or grammar   OR   evident weaknesses in organisation of material but using acceptable mathematical form, with few if any errors in spelling, punctuation and grammar.   QWC0 Evident weaknesses in organisation of material, and errors in use of mathematical form, spelling, punctuation or grammar.


Summer 2014 Paper 2 (Calculator allowed) Foundation Tier	Marks	Comments		
$\frac{\text { To be viewed with diagram }}{4 . \text { (a) Evidence of square counting }}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { B1 } \end{aligned}$	Inside the shape.   Condone answers like $60^{2}$ here.   F.T. 'their number of squares' $\times 8$ Unsupported answers in the range $456-504$ inclusive get all 3 marks, Mark final answer	57	456
			58	464
$\text { 456-504 inclusive }\left(\mathrm{m}^{2}\right)$			59	472
			60	480
			61	488
			62	496
			63	504
To be viewed with diagram		F.T. correct curvature up to the start of 'their line' Maximum of B1 if extra parts drawn		
4. (b) Lines	B1B1			
Arc				
5. (a)chord radius	B1B1			
To be viewed with diagram	B1			
5. (b) (i) $\mathbf{1 4 1}(\mathrm{mm})$ to $145(\mathrm{~mm})$ inclusive				
To be viewed with diagram	B1	Allow from the leftmost ' e ' in 'millimetres' to the ' e ' in 'the' in 'the length' inclusive.   Welsh: from the first ' $m$ ' to the ' $a$ ' in milimetrau		
5. (b) (ii) Perpendicular through C				
To be viewed with diagram		Allow 'on day 1 , day 2 and day 4 ' Allow 'on day 1 and day' 4		
Parts (a) to (e) marked at the same time				
6. (a) (Day) 2   (b) 3 (days)				
	B1 B1			
(c) 2 (days)	B1			
(d) $17.5(\mathrm{~mm}) \underline{\text { OR 171/2(mm) }}$	B1			
(e) $3.5(\mathrm{~mm})$	B1			
$\text { 7. (a) } \begin{gathered} \frac{8}{20} \\ \frac{1}{4} \\ \frac{2}{5} \end{gathered} \frac{10}{40} \quad \frac{5}{20}$	B2	B1 for either one correct AND none incorrect OR for both correct and 1 incorrect		
7. (b) 3 shaded sectors	B1			
$\begin{aligned} & \text { 7. (c) } \frac{5}{6}-\frac{2}{6} \\ & (=3 / 6)=1 / 2 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	Or equivalent correct method   Must be $1 / 2$. Unsupported $3 / 6$ gets M1, A0 M1, A1 for (0). 5		
8. (a) (i) 1	B1			
8. (a) (ii) -4	B1			
	$\begin{gathered} \hline \text { M1 } \\ \text { A1 } \end{gathered}$	Any correct method for finding $87 \%$.   $50.46 \%$ gets M1, A0, but M1, A1 for $£ 50.46$   Unsupported 50.4 OR 50.5 gets M1, A0   $\mathbf{5 0 . 4 6}$ seen then with further rounding still gets M1,A1		
8. (c) (i) 1.6	B2	B1 for $1.55(44819$...). All places given must be correct rounded or truncated. B1 for 1.5		
8. (c) (ii) 14.1	B2	B1 for 14.10(10627 ...) All places giv rounded or truncated.		orrect


Summer 2014 Paper 2 (Calculator allowed) Foundation Tier	Marks	Comments
9. (a) (i) Add 7 to the previous term	B1	Accept +7 , 'goes up in 7s', 'a gap of 7' B0 for $n+7$ OR $7 n-5$
9. (a) (ii) Multiply the previous term by -3	B1	Accept $\times-3$. B0 for $-3 n$ OR $n \times-3$   B1 for 'multiply by 3 and change the sign'.
9. (b) (i) $100 t$ (p)	B1	Accept $t \times 100,100 \times t, t 100$, and e.g. $t \times 100=t$ Condone change of letters. Ignore $£$ or p . B1 for 100tp but B0 for $100 p$
9. (b) (ii) $h-3$ (cm)	B1	Condone change of letters. Allow $h=h-3$ Ignore cm
9. (b) (iii) $8 w$ (kg)	B1	Accept $8 \times w, w 8, w \times 8$, and e.g. $8 w=w$ Condone change of letters. Ignore kg. B0 for $8000 w$, B1 for $8000 w \mathrm{~g}$
9. (c) (i) ( $x=$ ) 5	B1	Accept embedded answers such as $3 \times 5=15$ but B0 for $3 \times 5$ only.   B0 for $x=3 \times 5=15$
9. (c) (ii) ( $x=$ ) 11	B1	Accept embedded answers such as $11+5=16$. B 0 for $11+5=16 x$ OR $11 x$ OR B0 for only $\mathbf{1 1 + 5}$
Parts (a) \& (b) marked at the same time 10. (a) (i) 23 (years)   (a) (ii) 23 (years)   The 24 becomes 23 and the 47 becomes 46 O R Both ends are 1 less $\begin{aligned} & \text { (b) Sum of the numbers (272) } \\ & \text { Sum } / 8 \\ & =34 \text { (years) } \end{aligned}$	B1   B1   E1   M1   M1   A1	Comes from 47-24 Notes   In part (a)(ii) accept   F.T. 'their (a)(i)' For example, 23   because everyone   would be 1 year   $46-23=23$ gets the B1 and E1   B1, E1 for a list of the ages (each 1   less) and correct answer   E0 for 'they are the same people' OR 23   because the    difference in their    For attempt to add the numbers For dividing a number in the range   For   220 - 320 inclusive by 8.   C.A.O.
```11. Parts (a) \& (b) marked at the same time (a) \(11 \cdot 8(\mathrm{~cm})\) \(11 \cdot 8 \times 10\) \(=118(\mathrm{~km})\) To be viewed with diagram (b) Use Overlay Bearing \(097^{\circ}\) from A Bearing \(342^{\circ}\) from B Point (X)```	B1   M1   A1   M1   M1   A1	Allow 11.6-12.0 inclusive (Ignore km here)   FT 'their $11 \cdot 8^{\prime} \times 10$   km not required but A0 for incorrect units   Unsupported answers within 116-120 inc get B1,M1,A1.   Unsupported answers outside 116-120 inclusive get 0 .   Allow $\pm 2^{\circ}$   Allow $\pm 2^{\circ}$   F.T. if at least M1 awarded.   Unambiguous dots within the boundaries of the overlay can get the M1s. One unambiguous dot within the 'box' gets all 3 marks. Watch out for line segments.   An unambiguous point of intersection does not require X .
Parts (a) \& (b) marked at the same time 12. (a) (Number of dollars =) 1200×1.52 $=(\$) 1824$ ISW $\begin{aligned} & \text { (b) }(1824-1649) \div 1.52 \text { OR } 175 \div 1.52 \\ & =(£) 115.13 \text { ISW } \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	$\$$ not required but $£$ gets A0. F.T. 'their (\$) 1824 ' £ not required but \$ gets A0. Accept (£)115 but A0 for (£)115.1

Summer 2014 Paper 2 (Calculator allowed) Foundation Tier	Marks	Comments
Use Overlay 13. (a) Arcs to show 60° or 120° Arcs to bisect the 60° Line to show angle of 30°	$\begin{aligned} & \text { M1 } \\ & \frac{\mathbf{m} 1}{\mathrm{~A} 1} \end{aligned}$	We need to watch out for the case where there is no arc on the line. Candidates could have used the length of the line to set their compass length and placed the compass point at the end of the line. In this case there will only be arcs above the line. If not drawn at A - mark as if at A and penalise -1
Use Overlay 13. (b) Correct intersecting arcs Perpendicular line	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	There must be 2 pairs of intersecting arcs for M1. (Some candidates draw 1 pair of arcs and join up the intersection of these to the midpoint of the line (found by measurement?) which is incorrect M0,A0). 2 arcs drawn with radius 0.5 PQ and centred at P and Q is incorrect and gets 0 marks.
14.(a) Correct reflection	B2	B1 for the sight of the line $y=1$, or a reflection in any horizontal line B0 if more than one triangle drawn, unless all are reflections in a horizontal line
$\begin{aligned} & \text { Use overlay } \\ & \text { 14.(b) Correct enlargement } \\ & \quad \text { Correct position } \end{aligned}$	$\begin{aligned} & \text { B2 } \\ & \text { B1 } \end{aligned}$	B1 for any two adjacent lines correct Intention of correct placement, i.e. with appropriate rays seen, or correct positioning of at least two vertices Penalise consistent incorrect scale factor -1
$\begin{aligned} & \text { To be viewed with diagram } \\ & \text { 15.(a) (maximum width is } 2 \times 45=9(\mathrm{~m}) \text { AND } \\ & \text { (minimum length is } 3 / 4 \times 120=9(\mathrm{~m}) \\ & \quad \text { (maximum area is } 90 \times 120=) 10800\left(\mathrm{~m}^{2}\right) \text { AND } \\ & \quad(\text { minimum area is } 45 \times 90=) 4050\left(\mathrm{~m}^{2}\right) \end{aligned}$	B1 B1	Sight of 90(m) TWICE if unlabelled (max width \& min length) Both areas correct FT 'their 2×45 ' $\times 120$ correctly evaluated AND $45 \times$ 'their $3 / 4 \times 120$ ' correctly evaluated If neither of the previous B1s awarded, then award SC1 for sight of $90(\mathrm{~m})$ and one correct (FT) area
$\begin{aligned} & 4050 \times 1.5=6075\left(\mathrm{~m}^{2}<10800 \mathrm{~m}^{2}\right) \mathbf{O R} \\ & 100 \times 10800 / 4050=266.6(6 \ldots \%>150 \%) \text { OR } \\ & 100 \times(10800-4050) / 4050=166.6(6 . \%>50 \%) \text { OR } \\ & \text { similar appropriate check against Susan's statement, } \\ & \text { e.g. } \\ & 2 \times 4050=8100\left(<10800 \mathrm{~m}^{2}\right) \end{aligned}$	B1	The award of this mark requires a correct evaluation of the candidate's check. Must show correct evaluation FT 'their 4050 ' $\times 1.5$ correctly evaluated, or $100 \times$ 'their max area' / 'their min area' correctly evaluated, or similar appropriate check. Do not accept 50% of 10800 or 5400, B0, unless applied appropriately. Allow FT from this type of comparison. However, sight of $4050<5400$ is an appropriate comparison, hence B1 (and may also gain E1)
Conclusion that Susan is correct based on calculations, e.g. 'it is at least 50% greater, in fact it is (much) more' following from an appropriate calculation, or ' $6075\left(\mathrm{~m}^{2}\right)<10800\left(\mathrm{~m}^{2}\right)$ ', or $' 100 \times(10800-4050) / 4050=166.6(6 .) \%>.50 \%$, or $' 100 \times 10800 / 4050=266.6(6 \ldots \%)>150(\%)$ ', or 'Twice 4050 is less than 10800 '	E1	Allow 'is correct' implied, do not accept 'not correct' Accept that there may be errors in calculations, but that it is a conclusion based on attempting to work with area Watch for incorrect conclusion following correct working. FT appropriate conclusion based on their working provided the candidate has attempted to work with area. No working shown, then E0 Allow responses that clearly engage with the concept that doubling the width will result is an area that is at least 50% greater.

Summer 2014 Paper 2 (Calculator allowed) Foundation Tier	Marks	Comments
$\begin{aligned} & \text { 16. Taxable income }(52250-9205=) \\ & 40 \% \text { tax to be paid on } \\ & 0.2 \times 32255(=6451) 43045 \\ & \\ & 0.4 \times 10790(=4316) \end{aligned}$ (£) 6451 AND (£)4316 Claudia's tax should be (£)10767	B1 B1 M1 M1 A1 A1	FT 'taxable income' - 32255 , i.e. 'their 52250 -9205' - 32255 correctly evaluated FT $0.4 \times$ ('their 43045' -32255) provided 'their 43045 ' >32255, also FT (52250-32255 =) giving $0.4 \times 19995(=7998)$ FT sum of 'their 6451' + 'their 4316 ' provided at least 1 of these values is correct and M2 awarded $($ Note: $6451+7998=14449)$
17.(a) 246/365 ISW	B1	Allow 247/366
17.(b) Total for 12 months $(=12 \times 4=) \quad 48\left({ }^{\circ} \mathrm{C}\right)$ 11 months 48-26 (=22) $\begin{aligned} \div 11 & =2\left({ }^{\circ} \mathrm{C}\right) \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { m1 } \\ & \text { A1 } \end{aligned}$	FT 'their 12×4 ' Award B4 for an unsupported answer of $2\left({ }^{\circ} \mathrm{C}\right)$ Sight of $48-26 / 12$ is B1 only, Sight of (48-26)/12 is B1, M1 only
17.(c) Mid points $-1,-3,-5,-7,-9,-11$ $-11 \times 1+-9 \times 3+-7 \times 5+-5 \times 8+-3 \times 4+-1 \times 10(\Sigma f x=-$ 135) their $\Sigma f x / 31$ $-4.3548 \ldots\left({ }^{\circ} \mathrm{C}\right)$ rounded or truncated to 1 or more d.p.	B1 M1 m1 A1	Sight of any 3 correct values, with no incorrect values FT their mid points from within appropriate groups, or at bounds of the groups FT their $\Sigma f x / 31$ correctly evaluated. Must be negative. Accept -4, -4.4 or -4.3 only from correct working Award B4 unsupported -4.35 Omitted negative sign, penalise -1 only, then follow mark scheme as above.
17.(d) Any correct 10% of a value seen in working $\begin{aligned} & 251850-0.10 \times 251850(=251850-\mathbf{2 5 1 8 5}) \\ & 226665-0.10 \times 226665(=226665-\mathbf{2 2 6 6 6 . 5}) \end{aligned}$ 47851.5(0 Russian roubles)	B1 M1 A2	

PAPER 2-HIGHER TIER

Summer 2014 Paper 2 Higher Tier	Marks	Comments
1(a) Correct reflection	B2	B1 for the sight of the line $y=1$, or a reflection in any horizontal line B0 if more than one triangle drawn, unless all are reflections in a horizontal line
1(b) Correct enlargement Correct position	$\begin{aligned} & \text { B2 } \\ & \text { B1 } \end{aligned}$	B1 for any two adjacent lines correct Intention of correct placement, i.e. with appropriate rays seen, or correct positioning of at least two vertices Penalise consistent incorrect scale factor -1
2(a) (maximum width is $2 \times 45=$) $90(\mathrm{~m})$ AND (minimum length is $3 / 4 \times 120=$) $90(\mathrm{~m})$ (maximum area is $90 \times 120=$) $10800\left(\mathrm{~m}^{2}\right)$ AND (minimum area is $45 \times 90=$) $4050\left(\mathrm{~m}^{2}\right)$	B1 B1	Sight of 90(m) TWICE if unlabelled (max width \& min length) Both areas correct FT 'their 2×45 ' $\times 120$ correctly evaluated AND $45 \times$ 'their $3 / 4 \times 120$ ' correctly evaluated If neither of the previous B1s awarded, then award SC1 for sight of $90(m)$ and one correct (FT) area
$\begin{aligned} & 4050 \times 1.5=6075\left(\mathrm{~m}^{2}<10800 \mathrm{~m}^{2}\right) \mathbf{O R} \\ & 100 \times 10800 / 4050=266.6(6 \ldots \%>150 \%) \mathbf{O R} \\ & 100 \times(10800-4050) / 4050=166.6(6 . . \%>50 \%) \mathbf{O R} \end{aligned}$ similar appropriate check against Susan's statement, e.g. $2 \times 4050=8100\left(<10800 \mathrm{~m}^{2}\right)$	B1	The award of this mark requires a correct evaluation of the candidate's check. Must show correct evaluation FT 'their 4050 ' $\times 1.5$ correctly evaluated, or $100 \times$ 'their max area' / 'their min area' correctly evaluated, or similar appropriate check. Do not accept 50% of 10800 or 5400, B0, unless applied appropriately. Allow FT from this type of comparison. However, sight of $4050<5400$ is an appropriate comparison, hence B1 (and may also gain E1)
Conclusion that Susan is correct based on calculations, e.g. 'it is at least 50% greater, in fact it is (much) more' following from an appropriate calculation, or ' $6075\left(\mathrm{~m}^{2}\right)<10800\left(\mathrm{~m}^{2}\right)$ ', or $' 100 \times(10800-4050) / 4050=166.6(6 .) \%>.50 \%$, or ' $100 \times 10800 / 4050=266.6(6 \ldots \%)>150(\%)$ ', or 'Twice 4050 is less than 10800 '	E1	Allow 'is correct' implied, do not accept 'not correct' Accept that there may be errors in calculations, but that it is a conclusion based on attempting to work with area Watch for incorrect conclusion following correct working. FT appropriate conclusion based on their working provided the candidate has attempted to work with area. No working shown, then E0
Look for - spelling - clarity of text explanations, - the use of notation (watch for the use of ' $=$ ', m, m^{2} being appropriate)		Alternative:
QWC2: Candidates will be expected to - present work clearly, with words explaining process or steps AND - make few if any mistakes in mathematical form, spelling, punctuation and grammar and include units in their final answer QWC1: Candidates will be expected to - present work clearly, with words explaining process or steps OR - make few if any mistakes in mathematical form, spelling, punctuation and grammar and include units in their final answer	$\begin{gathered} \text { QWC } \\ 2 \end{gathered}$	Allow responses that clearly engage with the concept that doubling the width will result is an area that is at least 50% greater. QWC2 Presents relevant material in a coherent and logical manner, using acceptable mathematical form, and with few if any errors in spelling, punctuation and grammar. QWC1 Presents relevant material in a coherent and logical manner but with some errors in use of mathematical form, spelling, punctuation or grammar OR evident weaknesses in organisation of material but using acceptable mathematical form, with few if any errors in spelling, punctuation and grammar. QWC0 Evident weaknesses in organisation of material, and errors in use of mathematical form, spelling, punctuation or grammar.
2(b) (×)2.67	B2	Must be to 2decimal places B1 for sight of $10800 / 4050$ or $2.6(66 \ldots)$ or 2.7 or $2 \frac{2}{3}$ or $8 / 3$ For B2, FT ' $100 \times$ their max area / their min area' (\%) expressed as a decimal to 2 decimal places, or for B1, FT if truncated, unrounded or given as a fraction

Summer 2014 Paper 2 Higher Tier	Marks	Comments
3(a) 246/365 ISW	B1	Allow 247/366, 246.25/365.25
$\begin{array}{cc} \hline 3 \text { (b) (Total for } 12 \text { months } 12 \times 4=) & 48\left({ }^{\circ} \mathrm{C}\right) \\ 48-26 \quad(=22) & \\ & \div 11 \\ & =2\left({ }^{\circ} \mathrm{C}\right) \end{array}$	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{M} 1 \\ & \mathrm{~m} 1 \\ & \text { A1 } \end{aligned}$	FT 'their 12×4 ' Award B4 for an unsupported answer of $2\left({ }^{\circ} \mathrm{C}\right)$ Sight of $48-26 / 12$ is B1 only, Sight of (48-26)/12 is B1, M1 only
$\begin{aligned} & \text { 3(c) Mid points }-1,-3,-5,-7,-9,-11 \\ & -11 \times 1+-9 \times 3+-7 \times 5+-5 \times 8+-3 \times 4+-1 \times 10(\Sigma f x=-135) \\ & \quad \text { their } \Sigma f x / 31 \\ & -4.3548 \ldots\left({ }^{\circ} \mathrm{C}\right) \\ & \text { rounded or truncated to } 1 \text { or more d.p. } \end{aligned}$	$\begin{aligned} & \hline \text { B1 } \\ & \text { M1 } \\ & \text { m1 } \\ & \text { A1 } \end{aligned}$	Sight of any 3 correct values, with no incorrect values FT their mid points from within appropriate groups, or at bounds of the groups FT their $\Sigma f x / 31$ correctly evaluated. Must be negative. Accept $-4,-4.4$ or -4.3 only from correct working Award all 4 marks for unsupported -4.35 Omitted negative sign, penalise -1 only, then follow mark scheme as above
3(d)(i) Any correct 10% of a value seen in working $\begin{aligned} & 251850-0.10 \times 251850(=251850-\mathbf{2 5 1 8 5}) \\ & 226665-0.10 \times 226665(=226665-\mathbf{2 2 6 6 6 . 5}) \end{aligned}$ 47851.5(0 Russian roubles)	B1 M1 A2	$\left.\begin{array}{l}\text { OR } \begin{array}{l}\text { B1and M1 for } \mathbf{2 5 1 8 5 0} \times \mathbf{0 . 9 0}^{\mathbf{2}} \\ \text { B1 and M0 for } \mathbf{2 5 1 8 5 0} \times \mathbf{0 . 9 0}\end{array} \\ \text { Two different } 10 \% \quad \\ \text { OR sight of } 0.10 \times 251850 \text { AND } 0.10 \times 226665 \\ (\quad 25185 \quad \text { AND } 22666.5\end{array}\right)$
3(d)(ii) Boris's car cost 251850/50.37 (£)5000 Angharad paid (£)250 (more)	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { B1 } \end{aligned}$	Treat use of 203998.5, 203998 or 203999 as MR-1 FT 5250 - 'their 5000 ' correctly evaluated provided M1 previously awarded OR (Angharad's car $5250 \times 50.37=264442.5$ roubles) AND Difference $264442.5-251850=12592.5$ (roubles) B1 (Difference, Angharad paid) $12592.5 \div 50.37 \quad$ M1 (£)250 (more) For the M1 A1, FT 'their 12592.5 ' provided appropriate calculations are shown in the first 2 stages
4(a) 5 and 14	B2	B1 for each
4(b) Plots correct, allowing one error or the 2 omissions ($x=-1$ and $x=2$) All 6 points correct $\&$ joined with a curve	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	FT from (a) FT from (a). Need to have all 6 plots no omissions
4(c) Sight of $y=10$ including the intersection, or marking the intersection and $y=10$ with a point, or a vertical line to the point of intersection with $y=10$	B1	FT their graph. Unambiguous answer on the graph
5. Taxable income (52250-9205=) (£)43045 40% tax to be paid on (£)10790 $0.2 \times 32255(=6451)$ (£) 6451 AND (£)4316 Claudia's tax should be (£)10767	B1 B1 M1 M1 A1 A1	FT 'taxable income' - 32255 , i.e. 'their $52250-9205$ ' -32255 correctly evaluated FT $0.4 \times$ ('their 43045' - 32255) provided 'their 43045 ' > 32255, also FT (52250 - $32255=$) giving 0.4×19995 (=7998) FT sum of 'their 6451' + 'their 4316' provided at least 1 of these values is correct and M2 awarded $($ Note: $6451+7998=14449)$
6. Correct region shaded (major segment)	B3	Mark intention. B1 for line, B1 for any arc radius 4 cm centre B, B1 for shading (FT from a circle centre B and a straight line crossing AB)

Summer 2014 Paper 2 Higher Tier	Marks	Comments
7(a) $y=3 x+6$	B2	B1 for $y=6 / 2 x+6$ or equivalent, or for $\mathrm{m}=3$ (must be clear that this is the gradient), or for $\mathrm{c}=6$ (must be clear that this is the intercept)
7(b) Correct straight line drawn (gradient -2 , passing through ($0,-1$))	B2	B1 for any straight line drawn with gradient -2 , or a straight line passing through $(0,-1)$ with either gradient 2 or with a negative gradient
8(a) 78	B1	
8(b) $0,5,25,49,83,113,120$	B2	B1 for any three correct values, OR FT cumulative from 1 error finding 3 further cumulative values accurately
8(c) 3 unique vertical plots correct at upper bounds All plots correct and joined, including to zero at $\mathrm{t}=2.5$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	Only FT their cumulative table to (c) and (d) Accuracy of plotting: time on the grid line, cumulative frequency within the appropriate square with $1^{\text {st }} \&$ last plots on the grid lines Ignore bars only if intention clear that line or curve is being used in (d)
8(d) (i) Median from cumulative graph (10.8 minutes)	B1	FT from their cumulative graph in (c)
8(d)(ii) Attempt, (using the reading on the horizontal) UQ - LQ (5 minutes)	M1 A1	If (b) is not cumulative then do not FT to (c) \& (d)
9. Appropriate 46° or appropriate 44° seen or implied, e.g. $\begin{aligned} \text { Distance } & =6.2 \times \tan 46^{\circ} \quad \text { OR Distance }=6.2 \div \tan 44^{\circ} \\ & =6.4(2 \ldots \text { miles }) \end{aligned}$	B1 M2 A1	At least 1 relevant angle 44° or 46° seen or implied Sight of 224° is insufficient Do not FT for an angle of 45° as this is a simplified problem FT for M1 only, their 44° or their 46° provided it is $<90^{\circ}$ M1 for $\tan 46^{\circ}=$ distance $/ 6.2$ or $\tan 44^{\circ}=6.2 /$ distance CAO Unsupported answers gets no marks
$\begin{aligned} 10(a)(x-6)(& x+2) \\ & x=6 \text { AND } x=-2 \end{aligned}$	$\begin{aligned} & \text { B2 } \\ & \text { B1 } \end{aligned}$	B1 for $(x+6)(x-2)$ OR $(x-6)(x-2)$ STRICTLY FT their pair of brackets
10(b)(i) $5 \mathrm{n}-1$	B2	Accept $5 \mathrm{~N}-1$. Allow ' $n($ th $)=5 n-1$ ' B1 for 5 n Penalise incorrect letter -1 only
10(b)(ii) $\mathrm{n}^{2}+1$	B1	CAO. Accept $\mathrm{n} \times \mathrm{n}+1$ Do not penalise change of letter
$\begin{aligned} & \text { 11(a)(i) Using } 0.6 \times \ldots=0.18 \text { or } \\ & \text { sight of } 0.18 \div 0.6 \text { or } 0.18 / 0.6 \\ & \mathrm{P}(\text { drink })=0.3 \end{aligned}$	M1 A1	
11(a)(ii) Tree completed correctly ($0.4,0.3,0.7,0.3,0.7$ on appropriate branches)	B2	FT their ' 0.3 ', this could be 0.18 and 0.82 on second pairs of branches B1 for 0.4 with at least one other pair of branches total of 1
$\begin{aligned} 11 \text { (b) } 0.4 \times 0.7 & \\ = & 0.28 \end{aligned}$	M1 A1	FT attempt to multiply appropriate probabilities, provided no probability >1 FT for correct evaluation, provided not >1
$\begin{gathered} \text { 12(a) }(x+3)(2 x+3)+x(x+3)=70 \\ 2 x^{2}+6 x+3 x+9+x^{2}+3 x=70 \end{gathered}$ Convincing lead to $3 x^{2}+12 x-61=0$	$\begin{gathered} \mathrm{M} 1 \\ \mathrm{~A} 1 \\ \mathrm{~A} 1 \end{gathered}$	Accept $3 \mathrm{x}^{2}+12 \mathrm{x}=61$

\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
Summer 2014 Paper 2 \\
Higher Tier
\end{tabular} \& Marks \& Comments \\
\hline \begin{tabular}{l}
\[
\text { 12(b) } \begin{aligned}
\& x=\left\{-12 \pm \sqrt{ }\left(12^{2}-4 \times 3 \times-61\right)\right\} /(2 \times 3) \\
= \& \{-12 \pm \sqrt{ } 876\} / 6 \\
x= \& 2.93(288 \ldots) \text { (and } x=-6.9328 \ldots)
\end{aligned}
\] \\
Parallel side is \(5.93(\mathrm{~cm})\)
\end{tabular} \& \[
\begin{aligned}
\& \text { M1 } \\
\& \text { A1 } \\
\& \text { A1 } \\
\& \text { B1 }
\end{aligned}
\] \& \begin{tabular}{l}
Allow one slip in the substitution, but with correct formula \\
Ignore if negative answer is also given. \\
Allow rounded or truncated for A1, but 2 d.p. accuracy is required then for B1 \\
Must be to 2d.p. From 2 d.p value of x . \\
FT their positive \(\mathrm{x}+3\) evaluated to 2d.p. provided at least M1 awarded. \\
B 0 if negative response also given
\end{tabular} \\
\hline \[
\begin{aligned}
\& \text { 13. Strategy: Use of right angled triangle }(\mathrm{OAM} \text { or } \mathrm{OMB}) \\
\& \text { with either AM or MB }=10.4(\mathrm{~cm}) \\
\& \text { Sight of } \mathrm{OM}=\text { radius }-1.5 \text { or equivalent } \\
\& \text { OR } \quad \text { Radius }^{2}=\mathrm{OM}^{2}+10.4^{2} \\
\& \mathrm{R}^{2}=10.4^{2}+(\mathrm{R}-1.5)^{2} \quad \text { OR }(\mathrm{OM}+1.5)^{2}=10.4^{2}+\mathrm{OM}^{2} \\
\& \mathrm{R}^{2}=108.16+\mathrm{R}^{2}-1.5 \mathrm{R}-1.5 \mathrm{R}+2.25 \\
\& \mathrm{OR} \quad \mathrm{OM}^{2}+3 \mathrm{OM}+2.25=108.16+\mathrm{OM}^{2} \\
\& 3 \mathrm{R}=110.41 \quad \text { OR } \quad 3 \mathrm{OM}=105.91 \text { or } \quad \mathrm{OM}=35.3033 \ldots \\
\& \mathrm{R}=36.8(033 \ldots \mathrm{~cm}) \text { or } 37(\mathrm{~cm})
\end{aligned}
\] \& S1
B1
M1
M1
M

A1

A1 \& | Allow 1 slip |
| :--- |
| FT from their 1 slip |
| CAO |
| Alernative: |
| Strategy: Use of triangle MAP or PMB with 1.5 cm and 10.4 cm |
| Tan MPA $(\mathrm{MPB})=10.4 / 1.5$ leading to $81.792 \ldots{ }^{\circ} \quad$ B1 |
| (FT provided $\tan \mathrm{P}=10.4 / 1.5$ seen) |
| $180-2 \times 81.792 \ldots{ }^{\circ}\left(=16.41 \ldots .^{\circ}\right) \quad$ M1 |
| (Allow FT from 1 slip) |
| $\sin 16.41 \ldots .^{\circ}=10.4 /$ radius |
| $\begin{array}{cc}\text { Radius }=10.4 / \sin 16.41 \ldots{ }^{\circ} & \text { A1 } \\ \text { Radius } 36.8(033 \ldots \mathrm{~cm}) \text { or } 37(\mathrm{~cm}) & \text { A1 CAO }\end{array}$ |
| Also allow application of other circle theorem |

\hline \[
$$
\begin{aligned}
& \text { 14. } \operatorname{cosPBA}=\frac{6.2^{2}+5.8^{2}-8.6^{2}}{2 \times 6.2 \times 5.8} \\
& \sin \mathrm{QBC}=\frac{\sin 72^{\circ} \times 4.1}{7.5} \\
& \text { Angle } \mathrm{PBQ}=57\left({ }^{\circ}\right)
\end{aligned}
$$

\] \& | M2 |
| :--- |
| A1 |
| M2 |
| A1 |
| B1 | \& | M1 for $8.6^{2}=6.2^{2}+5.8^{2}-2 \times 6.2 \times 5.8 \times \operatorname{cosPBA}$ |
| :--- |
| Rounded or truncated |
| M1 for $\frac{\sin \mathrm{QBC}}{4.1}=\frac{\sin 72^{\circ}}{7.5}$ or $\frac{4.1}{\sin \mathrm{QBC}}=\frac{7.5}{\sin 72^{\circ}}$ |
| Rounded or truncated |
| Do not FT from premature rounding or truncation. |
| Do not accept $58\left(^{\circ}\right)$ or $57.2\left(^{\circ}\right)$, must be correct and whole FT provided at least M1 for each of cosine and sine rule awarded |

\hline 15(a) 0 \& B1 \&

\hline | 15(b) Tangent drawn at $\mathrm{t}=3.5$ |
| :--- |
| Method, difference $\mathrm{y} /$ difference x |
| Evaluated estimated answer from their reasonable tangent | \& | B1 |
| :--- |
| A1 | \& The values used must be correct, do not allow 27/3.5 May not be from a tangent, but must be from use of differences, e.g. curve used to form a 'right-angled triangle' (Approximately $3.3\left(\mathrm{~m} / \mathrm{min}^{2}\right.$)

\hline 15(c)(i) Finding v values: $(0) 14,29,26,$, Split into 4 areas and attempt to sum Correct substitution into trapezium rule 168 (metres) \& B1
M1
M1
A1 \& Sight of (0, 14, 29, 26, 30 Sight of the sum of 4 products or an attempt substitution of their 5 values in the trapezium rule Or equivalent. $(14+43+55+56)$ or $(0+28+58+52+30)$ FT their values for v provided at least 3 values are correct, OR 2 areas correct in sum of 4 possible

\hline 15(c)(ii) 0.168 (km) \& B1 \& FT their (i)/1000 evaluated correctly

\hline
\end{tabular}

GCSE Mathematics - Linear MS Summer 2014

WJEC
245 Western Avenue
Cardiff CF5 2YX
Tel No 02920265000
Fax 02920575994
E-mail: exams@wjec.co.uk website: www.wjec.co.uk

