шјес
cbac

GCSE MARKING SCHEME

SUMMER 2018

GCSE (NEW)
MATHEMATICS - UNIT 1 (HIGHER TIER) 3300U50-1

INTRODUCTION

This marking scheme was used by WJEC for the 2018 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

WJEC GCSE MATHEMATICS (NEW)

SUMMER 2018 MARK SCHEME

	GCSE MATHEMATICS Unit 1: Higher Tier Summer 2018	Mark	Comments
1.(a)	12	B1	
1.(b)	$\times 1.04^{7}$	B1	
1.(c)	$3^{1 / 5}$	B1	
2.(a)	12 AND 5 in correct position. Total of 18 for 'Bread of Heaven' Overall total of 30 .	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$	Any 'blank space' to be taken as 0 . If 'notches/tallies' are used, penalise -1 once. BO if any other number written in the same section. Allow more than one number in the same section. Allow more than one number in the same section.
2.(b)	$\frac{19}{30} \text { or equivalent. ISW }$	B2	B1 for a numerator of 19 OR FT 'their total for $H W N$ in a fraction < 1 . B1 for a denominator of 30 OR FT 'their total' in a fraction < 1 . An answer of 19/30 gains B2 regardless of 'their Venn diagram'. Penalise incorrect notation (e.g. '19 in 30^{\prime}) -1 .
3.(a)	$5 x^{2}-2 x-3 x^{2}+6 x-21$ $=2 x^{2}+4 x-21$	B2	B1 for sight of $5 x^{2}-2 x$. B1 for sight of $-3 x^{2}+6 x-21$. Brackets must be removed. Allow both of the above B marks even if not part of a single expression. FT for B2 if at least two x^{2} terms AND at least two x terms to be simplified. FT for B1 if at least two x^{2} terms OR at least two x terms to be simplified. If B2 not awarded, allow B1 for correct collection of ' x^{2} terms' ($2 x^{2}$) OR B1 for correct collection of ' x terms' (+4 x). This $2^{\text {nd }} \mathrm{B} 2$ (or B 1) is for their final answer. Any compensating errors leading to a 'correct' answer is $B 0$. Penalise -1 for any attempt to equate their expression to zero (and attempting to solve) OR incorrectly factorising.

3.(b)	$\begin{aligned} & 22-f=3 \times 6 \text { or equivalent. } \\ & 22-18=f \text { OR }-f=18-22 \\ & f=4 \end{aligned}$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	CAO. Accept $4=\mathrm{f} . \quad \mathrm{M} 1 \mathrm{~A} 1 \mathrm{AO}$ for $-\mathrm{f}=-4$. Mark final answer. Allow all 3 marks for $\frac{22-4}{3}=6$ with no further work. Allow 2 marks for $\frac{22-4}{3}=6$ followed by ' $f \neq 4$ '. If no marks gained, Allow SC1 for an unsupported $f=-4$. Allow SC1 for sight of 18 from 3×6.
4.(a)	$\begin{array}{r} 1 / 6 \times 1 / 6=1 / 36 \end{array}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	
4(b)(i)	$P($ Caernarfon $)=1 / 4$ or equivalent P(Newtown) AND P(Ebbw Vale) $=1 / 8$ or equivalent	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \end{aligned}$	Penalise incorrect notation -1 once only in 4(b) CAO. CAO. Do not allow $0.5 / 4$ for $1 / 8$.
4(b)(ii)	$1 / 2+1 / 8$ $=5 / 8$ or equivalent.	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	FT $1 / 2+$ 'their $\mathrm{P}($ Eb.V.)'. Provided $\mathrm{P}(E b . V)<1$ for M1. FT answer must be < 1 for A1. Mark final answer Allow $2 \cdot 5 / 4$ for $5 / 8$ if answer to $4($ (b)(i) is $0 \cdot 5 / 4$.
5.(a)	1.56×10^{6}	B2	Mark final answer. B1 for sight of 15.6×10^{5} OR 1560000 OR equivalent correct value but not in standard form.
5.(b)	1.3×10^{5}	B2	Mark final answer. B1 for sight of 13×10^{4} OR 130000 OR equivalent correct value but not in standard form.
6.	$3 x(4 x+y)$	B2	Accept $3 x(4 x+1 y)$ B1 for $3 x(4 x \pm \ldots)$. or $3 x(\ldots .+y)$ B1 for $3\left(4 x^{2}+x y\right)$ or $x(12 x+3 y)$.
7.	$\begin{gathered} (\mathrm{ADC}=) 109\left({ }^{\circ}\right) \\ x=180-26-109{ }^{\left(109\left({ }^{\circ}\right)\right.} \end{gathered}$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	Answers may be written on the diagram. Allow for sight of $109\left({ }^{\circ}\right)$. FT 'their 109° (may be clearly indicated on the diagram) provided $\neq 71$ and $\neq 26$. An answer of $45\left({ }^{\circ}\right)$ gains all 3 marks.

\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
8. \\
Correct construction of perpendicular bisector of line \(A B\). \\
Correct construction of \(60^{\circ}\) at A . \\
Arc of radius 6 cm , centre \(A\). \\
Correct region identified.
\end{tabular} \& B2

B1
B1

B1 \& | Allow $\pm 2^{\circ}$ and $\pm 2 \mathrm{~mm}$. |
| :--- |
| B1 for a perpendicular bisector with no arcs or only one pair of intersecting arcs (above or below) shown. |
| B1 for two sets of correct arcs, with no line or an incorrect line. |
| Must show relevant arcs. |
| Must be of sufficient length so as not to be considered a 'point' or a 'notch'. |
| FT for similar viable region (a straight line intersecting $A B$, an angle at point A and an arc with centre A) even if no previous marks gained. |

\hline | 9. $\angle \mathrm{BXC}=80\left({ }^{\circ}\right)$ |
| :--- |
| Reason: ' $\mathrm{BX}=\mathrm{BC}$ ' OR 'Isosceles triangle’ $\angle \mathrm{AXB}(=180-80)=100\left({ }^{\circ}\right)$ |
| Reason: 'Angles on a straight line'. $\angle A B X(=180-40-100)=40\left(^{\circ}\right)$ |
| Reason: 'Angles in a triangle'. |
| Statement 'So $A X=B X$ ', |
| Reason: 'Two equal angles (in a triangle)' OR $\angle A B X=\angle B A X \quad O R$ 'Isosceles triangle' |
| Sight of at least TWO of the above reasons. | \& B1

B1
B1
B1
B1

E1 \& | Angles shown on the diagram take precedence. If any angle is not named then it must be unambiguously identified either on the diagram, from a given reason or in further work. (e.g. must be convincing that $X=80$ is referring to $B X C$ and not AXB.) |
| :--- |
| If initial incorrect assumptions are made then allow correct FT methods to calculate other relevant angles. |
| FT 180 - 'their $\angle \mathrm{BXC}$ ' |
| FT 180-40-'their $\angle \mathrm{AXB}$ '. |
| Only available if $\angle \mathrm{ABX}$ stated or shown to be $40\left({ }^{\circ}\right)$ |
| Reasons must be appropriate AND are dependent on associated B1 gained. |

\hline | Alternative method 1. $\angle B X C=80\left(^{\circ}\right)$ |
| :--- |
| Reason: ' $B X=B C$ ' $O R$ 'Isosceles triangle'. $\angle C B X(=180-80-80)=20\left(^{\circ}\right)$ |
| Reason: 'Angles in a triangle'. $\angle A B X(=180-80-40-20)=40\left(^{\circ}\right)$ |
| Reason: 'Angles in a triangle'. |
| Statement 'So $A X=B X$ '. |
| Reason: 'Two equal angles (in a triangle)' OR $\angle A B X=\angle B A X \quad O R$ 'Isosceles triangle' |
| Sight of at least TWO of the above reasons. | \& $B 1$

$B 1$
$B 1$
$B 1$
B1

E1 \& | FT 180-80 - 'their $\angle B X C '$. |
| :--- |
| FT 180-80-40-' their $\angle C B X '$. |
| Only available if $\angle A B X$ stated or shown to be 40(${ }^{\circ}$) |
| Reasons must be appropriate AND are dependent on associated B1 gained. |

\hline Alternative method 2. (Assumption that $A X=B X$). \& \&

\hline
\end{tabular}

$\angle A B X=400^{\circ}$ Reason: ' $A X=B X$ ' OR 'Isosceles triangle'. $\angle A X B(=180-40-40)=100\left(^{\circ}\right)$ Reason: 'Angles in a triangle'. $\angle B X C=80\left(^{\circ}\right)$ Reason: 'Angles on a straight line'. Statement 'So $B X=B C$ ' (as given) Reason: 'Two equal angles (in a triangle)' $O R$ ' $\angle B X C=\angle B C X$ ' OR 'Isosceles triangle'. Sight of at least TWO of the above reasons.	B1 B1 B1 B1 E1	FT 180-40 - their $\angle A B X$ '. FT 180 - 'their $\angle A X B$ '. Only available if $\angle B X C$ stated or shown to be 80(${ }^{\circ}$ Reasons must be appropriate AND are dependent on associated B1 gained.
Alternative method 3. (Assumption that $A X=B X$). $\angle A B X=40\left({ }^{\circ}\right)$ Reason: ' $A X=B X$ ' OR 'Isosceles triangle'. $\angle C B X(=180-80-40-40)=20\left(^{\circ}\right)$ Reason: 'Angles in a triangle'. $\angle B X C(=180-80-20)=80\left(^{\circ}\right)$ Reason: 'Angles in a triangle'. Statement 'So $B X=B C$ ' (as given) Reason: 'Two equal angles (in a triangle)' $O R$ ' $\angle B X C=\angle B C X$ ' OR 'Isosceles triangle'. Sight of at least TWO of the above reasons.	$B 1$ $B 1$ $B 1$ $B 1$ E1	FT 180-80-40-'their $\angle A B X '$ ' FT 180-80-'their $\angle C B X$ '. Only available if $\angle B X C$ stated or shown to be $80\left({ }^{\circ}\right)$ Reasons must be appropriate AND are dependent on associated B1 gained.
Organisation and Communication. Accuracy of writing.	OC1	For OC1, candidates will be expected to: - present their response in a structured way - explain to the reader what they are doing at each step of their response - lay out their explanation and working in a way that is clear and logical For W1, candidates will be expected to: - show all their working - make few, if any, errors in spelling, punctuation and grammar - use correct mathematical form in their working - use appropriate terminology, units, etc

10. Correct enlargement	B2	B1 for triangle enlarged with scale factor -2 in incorrect position (within correct quadrant) OR correct enlargement with scale factor 2 (using correct centre)
OR		
consistent use of an incorrect negative scale		
factor (using correct centre)		
OR		
two (or three) correct vertices (not necessarily		
joined)		
B0 for using scale factor $+1 / 2$.		

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{13. (c) Valid statem} \& E1 \& \begin{tabular}{l}
e.g. 2 different values of \(t\) representing the ball on its way up and on its way down \\
OR \\
e.g. the ball reaches its highest point after \(4 / 5 \mathrm{~s}\). \\
FT provided both solutions are positive.
\end{tabular} \\
\hline \multicolumn{6}{|l|}{14. (a) 27} \& B1 \& \\
\hline \multicolumn{5}{|l|}{14. (b)} \& \[
\frac{1}{10}
\] \& B1 \& \\
\hline \multicolumn{6}{|l|}{15. (a) \(x=0.2454545 \ldots .\). and \(100 x=24 \cdot 54545 \ldots\). with an attempt to subtract \(243 / 990\) or \(27 / 110\) or equivalent.} \& M1
A1 \& \begin{tabular}{l}
Or \(10 x\) and \(1000 x\), or equivalent. Or a complete alternative method. \\
An answer of 24-3/99 gains M1 only. ISW
\end{tabular} \\
\hline \multicolumn{6}{|l|}{Alternative method \(0.2+0.0454545 \ldots \ldots=1 / 5+45 / 990\) or equivalent \(243 / 990\) or \(27 / 110\) or equivalent} \& \[
\begin{aligned}
\& \text { M1 } \\
\& \text { A1 }
\end{aligned}
\] \& ISW \\
\hline \multicolumn{6}{|l|}{15. (b) \(8 \times 5+8 \sqrt{ } 7-5 \times 3 \sqrt{7}-3(\sqrt{ } 7)^{2}\) or equivalent
\[
=19-7 \sqrt{ } 7
\]} \& \[
\begin{aligned}
\& \text { M1 } \\
\& \text { A1 }
\end{aligned}
\] \& Mark final answer. If no marks awarded, SC1 for 3 of the 4 terms correct. \\
\hline \begin{tabular}{l}
16. \\
\hline\(x\) \\
\hline\(x\) \\
\hline\(y\) \\
\hline
\end{tabular} \& -2
\(\frac{1}{4}\) \& -1
\(\frac{1}{2}\) \& 0 \& \[
2
\] \& \[
\begin{aligned}
\& \hline 2 \\
\& \hline 4
\end{aligned}
\] \& B1 \& Any 3 correct pairs of coordinates (need not be for integer values of x .) Must include one negative value of x . \\
\hline \multicolumn{6}{|l|}{Joining with a curve.} \& B1

C1 \& | FT their evaluations of y if shown (provided they do not produce a straight line). |
| :--- |
| Must include one negative value of x. |
| Tolerance for accuracy $\pm \frac{1}{2}$ a small square. |
| CAO. Exponential curve which passes through $\left(-2, \frac{1}{4}\right),(0,1)$ and (2, 4). |
| Must not intercept x axis anywhere, including beyond the required range of x values. |
| Tolerance for accuracy $\pm \frac{1}{2}$ a small square. |
| If no table or evaluations of coordinates are given (for at least 3 pairs of values, including one negative value of x), then |
| B1 B1 may be implied by C1 |
| or |
| if C0, B1 B1 may be implied by 3 correctly plotted points for $y=2^{x}$ (including one negative value of $\mathrm{x})$. |

\hline
\end{tabular}

16. (b) Reading from their graph for $\begin{aligned} x=1.4 \\ (y \approx 2 \cdot 6) \end{aligned}$	B1	FT 'their curve'. (No FT for a straight line.) Tolerance for accuracy $\pm \frac{1}{2}$ a small square.
16. (c) Reading from their graph for $\begin{array}{r} y=1.4 \\ \quad(x \approx 0.5) \end{array}$	B1	Accept an embedded answer. FT 'their curve'. (No FT for a straight line.) Must include all relevant readings if 'their graph' is not one-to-one. Tolerance for accuracy $\pm \frac{1}{2}$ a small square.
17. (a) Either $8 / 12 \times 7 / 11$ or $3 / 12 \times 2 / 11$ $8 / 12 \times 7 / 11+3 / 12 \times 2 / 11$ with no incorrect additional terms $62 / 132 \quad(=31 / 66)$	B1 M1 A1	ISW. If no other marks awarded, SC1 for an answer of 73/144 (from working 'with replacement', without allowing for 2 books)
17. (b) $11 / 12 \times 10 / 11 \times 9 / 10$ or equivalent $990 / 1320 \quad(=3 / 4)$ or equivalent	M1 A1	Or P(PPP) $+3 \times P(P P K)+3 \times P(P K K)+P(K K K)$ (or an alternative full method) ISW FT consistent use of 'their 12×11 '. If no other marks awarded, SC1 for an answer of 1331/1728 (from working 'with replacement') OR SC1 for this method and related answer, having omitted up to two (out of eight) products OR SC1 for $11 / 12 \times 10 / 11 \times 9 / 10 \times 1 / 9=990 / 11880$ $(=1 / 12)$ (for the $4^{\text {th }}$ prize being the book)
18. (a) 159° and 201° with no other values	B2	B1 for either angle. Check diagram. Penalise -1 for each extra value (beyond 2 attempts). Ignore extra (correct) values outside the required range.
18. (b) (i) Vertical enlargement upwards and downwards Scale factor of 2	B1	Mark clear intention. Must be the correct shape, i.e. a single cycle of a cosine curve, with x-intercepts at $x=90^{\circ}$ and $x=270^{\circ}$, minimum at $x=180^{\circ}$, maxima at $x=0$ and $x=360^{\circ}$. Accept any clear indication. Must have correct x and y-intercepts, correct minimum and correct point for $x=360^{\circ}$.
18. (b) (ii) Vertical translation Vertical -1	B1	Mark clear intention. Must be the correct shape, i.e. a single cycle of a cosine curve, with x-intercepts at $x=0^{\circ}$ and $x=360^{\circ}$, minimum at $x=180^{\circ}$, maxima at $x=0$ and $x=360^{\circ}$. Accept any clear indication. Must have correct x and y-intercepts, correct minimum and correct point for $x=360^{\circ}$. Award SC1 for a fully labelled sketch of $y=\cos x+1$.

