## GCSE MARKING SCHEME

SUMMER 2018

GCSE (NEW)
MATHEMATICS - UNIT 1 (INTERMEDIATE TIER)
3300U30-1

## INTRODUCTION

This marking scheme was used by WJEC for the 2018 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

## WJEC GCSE MATHEMATICS (NEW)

## SUMMER 2018 MARK SCHEME

| GCSE Mathematics Unit 1: Intermediate Tier Summer 2018 Final Marking Scheme | Mark | Comments |
| :---: | :---: | :---: |
| 1.(a) Both 13 AND 19 | B2 | Accept in any order. B1 for 17 AND 15. If B2 not awarded, B1 for any TWO of 11, 13, 17 and 19. |
| 1.(b) 12 | B2 | B1 for 16 or 18 or 20. <br> B1 for 12 AND any multiple of 12 (not in the list). |
| 1.(c) 17 | B1 |  |
| 2.(a) 10 miles | B1 |  |
| 2.(b) 1 kg | B1 |  |
| 2.(c) 7 pints | B1 |  |
| 3.(a) -5 | B2 | B2 for all three correct. B1 for one or two correct. |
| 3.(b) Correct plots. <br> Straight line from $(-4,-7)$ to $(6,3)$ | P1 | FT 'their $y$-values at $x=-2,2$ and 4 '. <br> 2 correct plots sufficient as they are told it's a straight line. Allow $\pm \frac{1}{2}$ a small square'. <br> P0 if any incorrect plot. <br> CAO no FT. Allow $\pm$ '1 small square'. <br> Must be from $(-4,-7)$ to $(6,3)$ but allow 'extended' line. <br> A correct line gains P1L1. |
| 3.(c) $\quad(-4,-7) \underset{(6,-7)}{(\text { In any order) }} \begin{gathered}(6,3)\end{gathered} \quad(-4,3)$ | B2 | B2 for all four correct. B1 for three correct. <br> Only award B1(not B2) if all four correct coordinates given for their extended line. <br> If L0 from a 'shortened correct line' then _FT (for B2 or B1). <br> If L0 from an incorrect line then FT (for B2 or B1) only if a quadrilateral has been drawn using 'their line' as a diagonal. <br> SC1 for the correct square drawn but no (or incorrect) coordinates given. |
| 4.(a) Statement indicating that $0 \cdot 3$ is less than $0 \cdot 5$. <br> OR Statement indicating that probability of selecting a blue ball should be greater than 0.5 . <br> OR Statement that refers to a proportion of the balls <br> e.g. '(Only) 30\% (of the balls) are blue', <br> '(Only) $3 / 10$ (ths) (of the balls) are blue'. | E1 | B0 for e.g. 'Fewer than half the balls are blue'. 'Should be higher', 'Would be above 0.3'. <br> Allow correct interpretation of $0 \cdot 3$ e.g. '(Only) 30 out of 100 are blue', '(Only) 15 out of 50 are blue'. <br> Accept any indication for $0 \cdot 5$, e.g. 'half', ' $1 / 2$ '. |
| 4.(b) 0.7 or equivalent. | B1 | B0 for incorrect notation e.g. '7 out of 10'. |
| 4.(c) $0.3 \times 50$ | $\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$ | If no marks gained, allow SC1 for sight of 15 e.g. '15/50', $15: 35$. |
| 5.(a) Correct cuboid | B2 | For B2, their cuboid must have edges along or parallel to the 3 directions usually associated with isometric paper (the two diagonals and the vertical). B1 for any one edge dealt with correctly for all its three occurrences in a cuboid. <br> For any mark to be awarded the line must go 'through the dots' AND have both ends 'on a dot'. Ignore attempt at handling 'hidden lines'. |
| $\text { 5.(b) (Volume =) } \begin{array}{rlr}  & & \\ & =72 \times 4 \times 3 & \\ & & \mathrm{~cm}^{3} . \end{array}$ | $\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { U1 } \end{aligned}$ | Any further manipulation to $6 \times 4 \times 3$ is M0. Independent of other marks. |




| 14.(a) $\quad 1.56 \times 10^{6}$ | B2 | Mark final answer. B1 for sight of $15.6 \times 10^{5}$ OR 1560000 OR equivalent correct value but not in standard form. |
| :---: | :---: | :---: |
| 14.(b) $1.3 \times 10^{5}$ | B2 | Mark final answer. <br> B1 for sight of $13 \times 10^{4}$ OR 130000 OR equivalent correct value but not in standard form. |
| 15. $3 x(4 x+y)$ | B2 | $\begin{array}{\|lll} \text { Accept } 3 x(4 x+1 y) & & \\ \text { B1 for } 3 x(4 x \pm \ldots) & \text { or } & 3 x(\ldots .+y) \\ \text { B1 for } 3\left(4 x^{2}+x y\right) & \text { or } & x(12 x+3 y) . \\ \hline \end{array}$ |
| 16. $\begin{gathered} (\mathrm{ADC}=) 109\left({ }^{\circ}\right) \\ x=180-26-109=45\left(^{\circ}\right) \end{gathered}$ | B1 <br> M1 <br> A1 | Answers may be written on the diagram. <br> Allow for sight of $109\left({ }^{\circ}\right)$. <br> FT 'their $109^{\circ}$ ' (may be clearly indicated on the diagram) provided $\neq 71$ and $\neq 26$. <br> An answer of $45\left({ }^{\circ}\right)$ gains all 3 marks. |
| 17. <br> Correct construction of perpendicular bisector of line $A B$. | B2 | Allow $\pm 2^{\circ}$ and $\pm 2 \mathrm{~mm}$ <br> B1 for a perpendicular bisector with no arcs or only one pair of intersecting arcs (above or below) shown. B1 for two pairs of correct arcs, with no line or an incorrect line. |
| Correct construction of $60^{\circ}$ at A . | B1 | Must show relevant arcs. |
| Arc of radius 6 cm , centre $A$. | B1 | Must be of sufficient length so as not to be considered a 'point' or a 'notch'. |
| Correct region identified. | B1 | FT for similar viable region (a straight line intersecting $A B$, an angle at point $A$ and an arc with centre $A$ ) even if no previous marks gained. |
| 18. |  | Angles shown on the diagram take precedence. If any angle is not named then it must be unambiguously identified either on the diagram, from a given reason or in further work. (e.g. must be convincing that $X=80$ is referring to BXC and not AXB.) <br> If initial incorrect assumptions are made then allow correct FT methods to calculate other relevant angles. |
| $\angle B X C=80\left({ }^{\circ}\right)$ <br> Reason: 'BX = BC' OR 'Isosceles triangle’ | B1 |  |
| $\angle \mathrm{AXB}(=180-80)=100\left({ }^{\circ}\right)$ <br> Reason: 'Angles on a straight line'. | B1 | FT 180 - 'their $\angle \mathrm{BXC}$ ' |
| $\angle A B X(=180-40-100)=40\left({ }^{\circ}\right)$ <br> Reason: 'Angles in a triangle'. | B1 | FT 180-40- 'their $\angle \mathrm{AXB}$ '. |
| Statement 'So AX = BX', <br> Reason: 'Two equal angles (in a triangle)' OR $\angle A B X=\angle B A X \quad O R$ 'Isosceles triangle'. | B1 | Only available if $\angle \mathrm{ABX}$ stated or shown to be $40\left({ }^{\circ}\right.$ ) |
| Sight of at least TWO of the above reasons. | E1 | Reasons must be appropriate AND are dependent on associated B1 gained. |


| Alternative method 1. |  |  |
| :---: | :---: | :---: |
| $\angle B X C=80\left(^{\circ}\right)$ <br> Reason: ' $B X=B C$ ' $O R$ 'Isosceles triangle'. | B1 |  |
| $\angle C B X(=180-80-80)=20\left(^{\circ}\right)$ <br> Reason: 'Angles in a triangle'. | B1 | FT 180-80-'their $\angle B X C$ '. |
| $\angle A B X(=180-80-40-20)=40\left(^{\circ}\right)$ <br> Reason: 'Angles in a triangle'. | B1 | FT 180-80-40-'their $\angle C B X$ '. |
| Statement 'So $A X=B X$ '. <br> Reason: ‘Two equal angles (in a triangle)' $O R$ $\angle A B X=\angle B A X \quad O R$ 'sosceles triangle'. | B1 | Only available if $\angle A B X$ stated or shown to be 40(\%) |
| Sight of at least TWO of the above reasons. | E1 | Reasons must be appropriate AND are dependent on associated B1 gained. |
| Alternative method 2. (Assumption that $A X=B X$ ). |  |  |
| $\angle A B X=40\left(^{\circ}\right)$ <br> Reason: ' $A X=B X$ ' OR 'Isosceles triangle'. | B1 |  |
| $\angle A X B(=180-40-40)=100\left(^{\circ}\right)$ <br> Reason: 'Angles in a triangle'. | B1 | FT 180-40- 'their $\angle A B X$ ' |
| $\begin{gathered} \angle B X C=80\left({ }^{\circ}\right) \\ \text { Reason: 'Angles on a straight line'. } \end{gathered}$ | B1 | FT 180 - 'their $\angle A X B$ '. |
| Statement 'So $B X=B C$ ' (as given) Reason: 'Two equal angles (in a triangle)' $O R$ ' $\angle B X C=\angle B C X$ ' OR 'Isosceles triangle'. | B1 | Only available if $\angle B X C$ stated or shown to be 80(\%) |
| Sight of at least TWO of the above reasons. | E1 | Reasons must be appropriate AND are dependent on associated B1 gained. |
| Alternative method 3. (Assumption that $A X=B X$ ). |  |  |
| $\angle A B X=4 O\left(^{\circ}\right)$ <br> Reason: ' $A X=B X$ ' $O R$ 'Isosceles triangle'. | B1 |  |
| $\angle C B X(=180-80-40-40)=20\left(^{\circ}\right)$ <br> Reason: 'Angles in a triangle'. | B1 | FT 180-80-40- 'their $\angle A B X$ '. |
| $\angle B X C(=180-80-20)=80\left(^{\circ}\right)$ <br> Reason: 'Angles in a triangle'. | B1 | FT 180-80-'their $\angle C B X$ ' |
| Statement 'So $B X=B C$ ' (as given) <br> Reason: 'Two equal angles (in a triangle)' $O R$ ' $\angle B X C=\angle B C X$ ' OR 'Isosceles triangle'. | B1 | Only available if $\angle B X C$ stated or shown to be 80(\%) |
| Sight of at least TWO of the above reasons. | E1 | Reasons must be appropriate AND are dependent on associated B1 gained. |

