GCSE MARKING SCHEME

SUMMER 2018

GCSE (NEW)
MATHEMATICS - UNIT 2 (INTERMEDIATE TIER)
3300U40-1

INTRODUCTION

This marking scheme was used by WJEC for the 2018 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

WJEC GCSE MATHEMATICS (NEW)

SUMMER 2018 MARK SCHEME

4. Attempt to display any 3 or 4 in a common format. e.g. all decimals or all as percentages or all with a common denominator or calculation using a common value.	M1	Method mark is for the attempt. e.g. attempt to show any three as $\begin{array}{cc} 0 \cdot 25,0.2(0), 0.28,0.26 & \text { OR } \\ 25(\%), 20(\%), 28(\%), 26(\%) & \text { OR } \end{array}$ $25 / 100,20 / 100,28 / 100,26 / 100 \text { OR }$ Say, $1 / 4 \times 25=6 \cdot 25,1 / 5 \times 25=5,7 / 25 \times 25=7,13 / 50 \times 25=6 \cdot 5$
Three values accurate. $13 / 50$ or equivalent AND all 4 correct.	$\begin{aligned} & \text { A1 } \\ & \text { A1 } \end{aligned}$	C.A.O. SC1 for a $13 / 50$ if no marks gained.
$\text { 5. } \begin{aligned} \text { Area } & =6 \times 4.5 \text { OR Perimeter } & =2(6+4 \cdot 5) \\ & =27 \mathrm{~cm}^{2} \text { AND } & =21 \mathrm{~cm} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A2 } \\ & \text { U1 } \end{aligned}$	Area and/or perimeter may be identified in later work but M0 if reversed. A1 for each. Both required. Must be clearly identified. Penalise - 1 if not identified (by answer space or words) (Note : Area $=21 \mathrm{~cm}^{2}$ Perimeter $=27 \mathrm{~cm}$ in the answer space would gain $M 0, A 0, U 1)$
6.(a) $\quad \mathrm{c}=\mathrm{a}+\mathrm{b}$	B1	
6.(b) $\mathrm{a}+\mathrm{c}+\mathrm{s}+\mathrm{q}=360^{\circ}$	B1	
6.(c) $a+b+c+d+e=360^{\circ}$	B1	
7. An attempt to find the total of the four time periods.	M1	Allow any convincing attempt. A total has to be found. e.g. sight of 18.16 or 18 h 16 min etc. Not enough to simply list $\text { e.g. } 520+244+618+434$
$\begin{array}{ccc} 18(\mathrm{hr}) & 56(\mathrm{~min}) & \text { OR } \\ & \div 4 & 1136(\mathrm{~min}) \end{array}$	$\begin{aligned} & \mathrm{A} 1 \\ & \mathrm{~m} 1 \end{aligned}$	C.A.O. Allow $18.93(\ldots)$ (hr) but mark final answer. FT for m 1 , only if 'their sum of time periods' is between $17 \mathrm{~h}(1020 \mathrm{~min})$ and $21 \mathrm{~h}(1260 \mathrm{~min})$ inclusive.
$=4$ hours 44 minutes	A1	Allow FT A1 only if the sum of their time period is x hrs y min where x is not a multiple of 4 and $y \neq 0$. OR the sum of their time period is t minutes, where t is not a multiple of 60 . Sight of $284(\mathrm{~min})$ implies M1A1m1
		Note 1: If time is incorrectly added as 'decimals'. 18.16 or 18 h 16 min is M1A0. Further work of $18.16 \div 4=4.54$ (or 4 h 54 m) is m 1 AO BUT $18 \mathrm{~h} 16 \mathrm{~m} \div 4=4 \mathrm{~h} 34 \mathrm{~m}$ is m 1 A 1 (FT)
		Note 2: Incorrect use of calculator. e.g. M1A0m1A0 for sight of 930.5 (min) (From $320+164+378+274 \div 4)$
Alternative method		
Attempt to add time periods as 'hours + min' 17hours (+) 116 minutes		
$\div 4$	A1 m1	FT for m1, only if 'their sum of time periods' is
	A1	between 17 h (1020 min) and 21 h (1260min) inclusive.

\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
8. (Volume \(A=) 5 \times 5 \times 5\left(\mathrm{~cm}_{3}^{3}\right) \quad\) OR (Volume B =) \(4 \times 4 \times 5\left(\mathrm{~cm}^{3}\right)\) \\
(Volume A =) \(125\left(\mathrm{~cm}^{3}\right)\) \\
AND (Volume B =) \(80\left(\mathrm{~cm}^{3}\right)\) \\
(Volume of B as a percentage of the volume of A)
\[
\begin{aligned}
= \& \frac{80}{125}(\times 100 \%) \\
\& =64(\%)
\end{aligned}
\]
\end{tabular} \& \begin{tabular}{l}
M1 \\
A1 \\
M1 \\
A1
\end{tabular} \& \begin{tabular}{l}
For use of \(\mathrm{Vol}=\mathrm{I} \times \mathrm{b} \times \mathrm{h}\) with either A or B . \\
C.A.O. for both volumes. \\
One correct implies previous M1. \\
FT their derived 'volumes'. \\
An answer of 64(\%) gains all four marks. \\
Allow marks if they work with base areas (as heights are equal) but must explain in order to gain OC1 mark.
\end{tabular} \\
\hline \[
\begin{aligned}
\& \text { Alternative method } \\
\& \text { (Where } 125 \mathrm{~cm}^{3} \text { and } 80 \mathrm{~cm}^{3} \text { not shown.) } \\
\& \begin{array}{r}
5 \times 5 \times 5\left(\mathrm{~cm}^{3}\right) \text { OR } 4 \times 4 \times 5\left(\mathrm{~cm}^{3}\right) \\
\frac{4 \times 4 \times 5}{5 \times 5 \times 5}(\times 100 \%) \\
=
\end{array}
\end{aligned}
\] \& \begin{tabular}{l}
M1
M2 \\
A1
\end{tabular} \& \\
\hline \begin{tabular}{l}
Organisation and Communication. \\
Accuracy of writing.
\end{tabular} \& OC1

W1 \& | For OC1, candidates will be expected to: |
| :--- |
| - present their response in a structured way |
| - explain to the reader what they are doing at each step of their response |
| - lay out their explanation and working in a way that is clear and logical |
| For W1, candidates will be expected to: |
| - show all their working |
| - make few, if any, errors in spelling, punctuation and grammar |
| - use correct mathematical form in their working |
| - use appropriate terminology, units, etc |

\hline $\begin{array}{lll}9 . & 3(4 x-7)=27 & \text { or equivalent } \\ 4 x=16 \text { or } 12 x=48 & \text { or equivalent }\end{array}$ $4 x=16$ \& \[
$$
\begin{aligned}
& \text { M1 } \\
& \text { A1 } \\
& \text { A1 }
\end{aligned}
$$

\] \& | M1 for $4 x-7=27 / 3$ |
| :--- |
| FT from $a x=b$. |
| Allow 3 marks for embedded answer BUT |
| Only two marks if contradicted by ' $x \neq 4$ '. |
| Unsupported answer of $x=4$ gains all three marks. |
| If no marks gained allow SC1 for sight of 9 . |

\hline 10.(a) $1-0.36-0.12-0.24=0.28$ \& $$
\begin{aligned}
& \text { M1 } \\
& \text { A1 }
\end{aligned}
$$ \&

\hline $$
\begin{aligned}
& \text { 10.(b) } 522 \times 1 / 3 \text { or equivalent } \\
& \quad \text { (e.g. } 522 \div 0.36 \times 0.12)
\end{aligned}=174
$$ \& \[

$$
\begin{aligned}
& \text { M1 } \\
& \text { A1 }
\end{aligned}
$$
\] \&

\hline 11.(a) 8.27 \& B2 \& | Mark final answer. |
| :--- |
| B1 for sight of 8.26(.....) or for sight of $8 \cdot 270$ or for sight of 8.30 or for sight of 8.3 |

\hline 11.(b) 0.0213 \& B2 \& | Mark final answer. |
| :--- |
| B1 for sight of 0.0212(.......) Ignore 'recurring dot'. |

\hline
\end{tabular}

17.(a) $x=3.2 \times \frac{8.4}{5.6} \quad$ OR $\quad \frac{x}{3.2}=\frac{8.4}{5.6}$ or equivalent. $x=4 \cdot 8$	M1	M1 for correct use of linear ratio.
17.(b) $y=6.3 \times \frac{5 \cdot 6}{8 \cdot 4}$ OR $\underset{6 \cdot 3}{y}=\frac{5 \cdot 6}{8 \cdot 4}$ or equivalent. $y=4 \cdot 2$	M1	M1 for correct use of linear ratio. FT a slip in the calculation (not a misuse) of the scale factor in part (a) if used again in (b).
17.(c) Correct strategy of comparing corresponding ratio of lengths. Indicates that $\frac{3.9}{6.5}(=0.6)$ is not equal to $\frac{5.6}{8.4}(=0.666 \ldots) \quad$ or equivalent.	S1	Sight of 3.9/6.5 (or 6.5/3.9) along with any pair of corresponding lengths or scale factor used (or corresponding FT lengths from their answers in 17(a) or 17(b)). Allow using FT values from 17(a) or 17(b).
Alternative method 1 (If $C D=3.9$ then) $R S=3.9 \times 1.5$ $=' 5.85(\mathrm{~cm})$ ' or/and 'which is not 6.5 '	$\begin{aligned} & \text { S1 } \\ & \text { B1 } \end{aligned}$	
Alternative method 2 $\begin{aligned} \text { (If RS } & =6.5 \text { then) } C D=6.5 \times 2 / 3 \\ & =4.3 \ldots(\mathrm{~cm}) \text { ' orland 'which is not } 3.9 \text { ' } \end{aligned}$	$\begin{aligned} & \text { S1 } \\ & \text { B1 } \end{aligned}$	
18. $2 x-y=6$ or equivalent e.g. $12(2 x-y)=72$ $3 x+y=16 \cdot 5$ or equivalent e.g. $3 x+y+3 x+y=33$ Correct method to solve simultaneous equations. $\begin{aligned} & x=4 \cdot 5 \\ & y=3 \end{aligned}$	B1 B1 M1 A1 A1	B1 for sight of correct equation. B1 for sight of correct equation. FT 'their two simultaneous equations'. Equating a variable (if necessary) AND adding or subtracting as appropriate. Allow one slip. C.A.O. from 'their equations' for $1^{\text {st }}$ variable. F.T. from substituting 'their $1^{\text {st }}$ variable' if M1 gained. SC1 if $x=4.5$ AND $y=3$ given without using simultaneous equations method. This could happen after a B1 (or B1B1) gained or just appear with no equations shown.
$\begin{aligned} & \text { 19.(a) Tan ACB }=\frac{6.5}{10.4} \\ & \\ & \\ & \text { (ACB }=) \tan ^{-1} 0.625 \text { or } \tan ^{-1}(6.5 / 10.4) \\ & (\mathrm{x})=32\left({ }^{\circ}\right) \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	M1 for equivalent complete method. C.A.O. (Implies previous A1.) Accept an answer that rounds to $32\left(^{\circ}\right.$)
Alternative method. Correct use of 'two-step' method. $(x)=32\left(^{\circ}\right)$	$\begin{aligned} & \text { M2 } \\ & \text { A1 } \end{aligned}$	A partial trigonometric method is MO. Accept an answer that rounds to 32(${ }^{\circ}$)
$\begin{aligned} & \text { 19.(b) } \quad(D E=) 9 \cdot 4 \times \sin [22+32]\left({ }^{\circ}\right) \\ & \end{aligned}$	M2	FT $22^{\circ}+$ their 32°. M0 for using $\sin 22^{\circ}$ or sin 'their 32° ' alone. M1 for $\frac{D E}{9 \cdot 4}=\sin 54\left({ }^{\circ}\right)$ If no marks awarded SC1 for a correct answer (1dp) using their clearly stated or shown angle (D)C(E), but not 22° or 'their 32°.
Alternative method. Correct use of 'two-step' method. $(D E)=7 \cdot 6(\ldots)(\mathrm{cm}) \quad I S W$	$\begin{aligned} & \text { M2 } \\ & \text { A1 } \end{aligned}$	A partial trigonometric method is MO.

