## GCSE MARKING SCHEME

SUMMER 2018

GCSE (NEW)<br>MATHEMATICS - NUMERACY UNIT 2 - HIGHER TIER 3310U60-1

## INTRODUCTION

This marking scheme was used by WJEC for the 2018 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

SUMMER 2018 MARK SCHEME


| 1(b) Impact, e.g. <br> 'more in September 2012 than in September 2014 as the number of $5 p$ bags bought is falling over time', 'less given to good causes', 'decreases', 'less (given)' | E1 |  |
| :---: | :---: | :---: |
| 2(a) (Rhodri's time is) 5.5/22 $=0.25$ (hours) or 15 mins | $\begin{aligned} & \mathrm{M} 1 \\ & \text { A1 } \end{aligned}$ | Use of 0.25 hours as 25 minutes is A 0 otherwise if not used, ignore incorrect conversion to minutes |
| Megan's time is 0.25 (hrs) - 5 mins ( 10 minutes or $\frac{1}{6}$ hour or $0.166 \ldots$ hour) | M1 | For the idea, irrespective of inconsistent units <br> FT 'their 0.25 hours' or 'their 15 minutes', including use of 0.25 hours, e.g. as 25 minutes |
| (Megan's route is) $12 \times 10 \quad(\div 60)$ | M1 | FT 'their time used', written in hours or minutes provided at least M1 previously awarded |
| $=2$ (miles) | A1 | CAO <br> No marks for an unsupported answer of 2 (miles) |
| 2(b) 66 (km/h) | B1 |  |
| $\begin{aligned} & 3(a)(i)\left(x^{2}=\right) 3^{2}+12^{2} \\ & x^{2}=153 \text { or }(x=) \sqrt{ } 153 \end{aligned}$ $12.4 \text { (cm) }$ | M1 <br> A1 A2 | Or alternative full method <br> Or accurate first stage of alternative full method <br> Must be 3 s.f. <br> A1 for sight of ( $x=$ ) 12.40 or 12.3(69...cm), <br> NOT for 12 (cm) <br> FT from M1 for the correctly evaluated square root of 'their 153' provided 'their answer' > 12 (cm) |
| $\begin{aligned} & \text { 3(a)(ii) }(y=) \tan ^{-1} 3 / 12 \text { or } \tan ^{-1} 0.25 \text {, or } \\ & \cos ^{-1} 12 / 12.4 \text { or } \cos ^{-1} 0.967 . . \text { or } \\ & \cos ^{-1} 0.97 . . \text { or } \sin ^{-1} 3 / 12.4 \text { or } \sin ^{-1} 0.24 \ldots, \\ & \quad(y=) 14\left(.0 .^{\circ}\right) \quad\left(\text { which is }<15^{\circ}\right) \end{aligned}$ | M2 <br> A1 | FT 'their 12.4' provided > 12 (cm) <br> M1 for $\tan y=3 / 12$ or $\cos y=12 / 12.4$ <br> or $\sin y=3 / 12.4$ <br> Accept 14. $\left(59 \ldots{ }^{\circ}\right)$ from use of 12.4 cm |
| $\begin{array}{ccc} \hline 3 \text { (b) } 12 \times 4.5 \div 3 & \text { or } & 4.5 / \tan 14\left(.0 . .^{\circ}\right) \\ 18(\mathrm{~cm}) & \text { or } & 18.0(\ldots \mathrm{~cm}) \end{array}$ | $\begin{aligned} & \mathrm{M} 1 \\ & \text { A1 } \end{aligned}$ | FT 'their angle y' ISW to calculate the hypotenuse |
| 4(a) $(2 \times) 65 \times 5650\left(\mathrm{~m}^{2}\right)$ | $\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$ |  |

\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
4(b) (Area of both ends) \(\pi \times 20^{2}-\pi \times 15^{2}\) or equivalent
\[
+650
\] \\
An answer in the range
\[
1199\left(\mathrm{~m}^{2}\right) \text { to } 1200\left(\mathrm{~m}^{2}\right)
\]
\end{tabular} \& M2
m1

A1 \& | (= 1256.(...) - 706.(...)) |
| :--- |
| M1 for $1 / 2 \times \pi \times 20^{2}-1 / 2 \times \pi \times 15^{2}$ or $2 \times \pi \times 20^{2}-2 \times \pi \times 15^{2}$ |
| FT adding 'their (a)' |
| FT provided at least M1 previously awarded |
| Accept $175 \pi+650\left(\mathrm{~m}^{2}\right)$ |
| FT from M2, m1 previously awarded | <br>

\hline $$
\begin{array}{r}
\text { 4(c) Area } \times(0 .) 20 \div 3 \\
£ 80
\end{array}
$$ \& \[

$$
\begin{aligned}
& \hline \text { M1 } \\
& \text { A1 }
\end{aligned}
$$

\] \& | FT 'their area' from 4(b) |
| :--- |
| Must be correct to the nearest $£$ |
| An answer of 8000 implies M1, A0 | <br>

\hline $$
\text { 5. } \begin{aligned}
& C=\frac{300 \times(60-32)}{32-8} \\
&=350 \text { (litres) } \\
& \mathrm{T}=\frac{350+300}{26} \\
&=25 \text { (minutes) }
\end{aligned}
$$ \& M2

A1
M1

A1 \& | M1 for any 3 or 4 values substituted correctly |
| :--- |
| CAO |
| FT 'their derived 350' and 'their 300' (used as H ) |
| If no marks, award SC1 for all 5 of the following correctly matched, i.e. $H=300, M=32, X=60, Y=8, F=26$ | <br>

\hline 6(a) Midpoints 20.5, 21.5, 22.5, 23.5 Missing 10 days for $23 \leq t<24$

\[
$$
\begin{gathered}
20.5 \times 4+21.5 \times 8+22.5 \times 8+23.5 \times 10 \\
(=82+172+180+235=669) \\
\div 30 \\
22.3\left({ }^{\circ} \mathrm{C}\right)
\end{gathered}
$$

\] \& | B1 |
| :--- |
| B1 |
| M1 |
| m1 |
| A1 | \& | FT 'their 10 ' provided $\neq 0$ |
| :--- |
| Allow with incorrect midpoints provided each one is within the correct interval including 'bounds' |
| FT 20 + 'their 10 ' |
| Allow $22\left({ }^{\circ} \mathrm{C}\right)$ from correct working |
| If no marks or first B1 only, award SC1 for an answer of $21.7\left({ }^{\circ} \mathrm{C}\right)$ (from working with the 20 days given) | <br>


\hline | 6(b) Suitable assumption stated, e.g. 'used the midpoints (to represent each group)', |
| :--- |
| 'I used a value in each of the groups to represent the group', |
| 'the temperature is between the 2 values each time' | \& E1 \& FT from 'their points' used in (a) <br>


\hline | 6(c) Suitable reason given, e.g. 'many of the temperatures were less than the midpoint of the group in which they were recorded', |
| :--- |
| 'the temperatures were often towards the lower end of the groups' | \& E1 \& | Do not accept e.g. 'mid points were used', 'Faryl used exact values', 'raw data was used by Faryl', |
| :--- |
| 'Faryl found the actual mean' without further explanation | <br>

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline 7(a) A time between 9 and 9.5 seconds inclusive \& B1 \& \\
\hline \begin{tabular}{l}
7(b) Tangent drawn at 10 seconds Idea of increase in \(y \div\) increase in \(x\) \\
Correctly evaluated gradient for their tangent
\end{tabular} \& M1
M1

A1 \& | Attempt to draw a tangent at time 10 seconds |
| :--- |
| Needs to come from a tangent to the curved part of the graph Ignore signs for M1 only |
| Dependent on M1M1 awarded | <br>

\hline $$
\begin{aligned}
& 7 \text { (c)(i) } \quad 2 \times 1.75 \times 60 \div 8 \\
&=26.25(\text { gallons } / \mathrm{min})
\end{aligned}
$$ \& M2

A1 \& | May be seen in stages |
| :--- |
| M1 for the correct use of 2 with any 2 operations |
| FT only from M2 |
| Accept 26 (gallons/min) from correct working |
| Alternative method: |
| M2 for $\frac{2 \times 60}{4 \cdot 5(46)}$ May be seen in stages |
| M1 for correct use of 2 with $4.5(46)$ |
| A1 for 26(-..) FT only from M2 |
| Accept 26 (gallons/min) from correct working |
| Note: Accept an answer of 27 (gallons/min) |
| from use of 4.5 | <br>

\hline  \& \[
$$
\begin{aligned}
& \text { M1 } \\
& \text { A1 }
\end{aligned}
$$

\] \& | FT 'their derived 26.25' |
| :--- |
| Alternative methods: |
| M1 for $26.25 \times 3.5$ |
| FT 'their derived 26.25' |
| A1 for 91(•875) (gallons) AND e.g. 'Yes' |
| OR |
| M1 for $90 \div 3.5$ |
| A1 for 25•7(142...) or 26 (gallons/min) AND |
| e.g. 'Yes' |
| FT 'their derived 26.25' | <br>

\hline
\end{tabular}

| 8. | B1 | Accept use of $15 \cdot 249$ and $2014 \cdot \dot{9}$ throughout, but do not accept use of 15.249 and 2014.9 |
| :---: | :---: | :---: |
|  |  |  |
| Sight of 14.75 (cm) and 15.25 (cm) OR <br> sight of 2005 (cm) and 2015 (cm) |  |  |
| (Smallest number of pictures $=$ ) | M1 | FT 'their 2005 cm ' provided |
| $\frac{2005}{15 \cdot 25}$ |  | $2000 \leq l<2010 \mathrm{~cm}$, and 'their 15.25 cm ' provided $15<w \leq 15.5 \mathrm{~cm}$ |
| $=131$ | A1 | CAO |
|  |  | Accept unsupported 131 provided 2005 (cm) and $15.25(\mathrm{~cm})$ seen |
| (Greatest number of pictures =) 2015 | M1 | FT 'their 2015 cm ' provided |
| $\frac{2015}{14.75}$ |  | $2010<l \leq 2020 \mathrm{~cm}$, and 'their 14.75 cm ' provided $14.5 \leq w<15 \mathrm{~cm}$ |
| $=136$ | A1 | CAO <br> Accept unsupported 136 provided 2015 <br> $(\mathrm{cm})$ and $14.75(\mathrm{~cm})$ seen |
| False False False | B2 | B1 for any 3 correct |
| $\begin{aligned} & 9(\mathrm{~b}) \\ & (\text { Amount }=) \sqrt{\frac{1036}{1000}} \times 1000 \\ & \text { or } 1.017(84 \ldots) \times 1000 \end{aligned}$ | M3 | Could be seen in stages <br> M2 for $\sqrt{\frac{1036}{1000}}$ <br> M1 for $1000 \times$ multiplier $^{2}=1036$ or M1 for $(1+i / 2)^{2}-1=0.036$ |
|  |  |  |
| (Amount after 6 months =) (£) 1017.84 | A1 | An unsupported $£ 1018$ is awarded MOAO <br> Note: A final answer of ( $£$ ) 1017.85 can be awarded M3A0 provided no incorrect work seen |
| $\begin{aligned} & \text { 10(a) (Volume of } 500 \text { supports }=1 \\ & \pi \times 3^{2} \times 9+ \\ & \begin{array}{cc} (81 \pi \text { or } 254 \cdots) & (320) / 2 \times 10 \\ & \times 500 \\ =287170 \text { to } 287251\left(\mathrm{~mm}^{3}\right) \end{array} \end{aligned}$ | $\begin{aligned} & \text { M2 } \\ & \text { m1 } \\ & \text { A1 } \end{aligned}$ | M1 for summing 2 terms, with 1 correct |
|  |  | FT from M1 for m1 only Or $500(320+81 \pi)\left(\mathrm{mm}^{3}\right)$ or |
|  |  | $\begin{aligned} & \text { Or } 500(320+81 \pi)\left(\mathrm{mm}^{3}\right) \text { or } \\ & 160000+40500 \pi\left(\mathrm{~mm}^{3}\right) \end{aligned}$ |


| 10(b) |  |  |
| :---: | :---: | :---: |
| Sight of area of 1 of the curved surfaces $\pi \times 4 \times 1 \cdot 2 \quad \text { OR } \quad \pi \times 1.8 \times 3$ | B1 |  |
|  | M2 | Or equivalent M1 for a calculation involving 3 or more terms with at least the equivalent of 2 of these terms correct |
| $=57.07$ to $57.24\left(\mathrm{~cm}^{2}\right)$ | A1 | Or $18.2 \pi$ or equivalent. CAO |
| $\begin{aligned} & (\% \text { reduction }=) \\ & \frac{\pi \times 0.9^{2}}{57(\cdot \ldots)}(\times 100) \quad \text { OR } \quad \frac{2.5(\ldots)}{57(\ldots)}(\times 100) \end{aligned}$ | M1 | FT 'their derived 57.07 to 57.24 ' ( $\pi \times 0.9^{2}=2 \cdot 5(434)$ to 2.55 ) |
| $=4 \cdot 3(67 \ldots)$ to $4 \cdot 5$ (\%) | A1 | Accept an answer of $4(\%)$ from correct working <br> Alternative method for \% reduction: $\text { M1 for } \left.1(\times 100)-\frac{(57(\ldots)-2 \cdot 5(\ldots))}{57(\ldots)} \times 100\right)$ <br> FT 'their derived 57.07 to 57.24 ' A1 for 4-3(67...) to 4.5 (\%) Accept an answer of 4(\%) from correct working |
| $\begin{aligned} & 11(\mathrm{a}) \\ & \left(\mathrm{BE}^{2}=\right) 2^{2}+5 \cdot 5^{2} \end{aligned}$ | M1 |  |
| $\mathrm{BE}^{2}=34.25$ or ( $\left.\mathrm{BE}=\right) \sqrt{ } 34.25$ or | A1 |  |
| $\begin{aligned} & (\mathrm{BE}=) 5 \cdot 8(5 \ldots) \\ & \left(\mathrm{AB}^{2}=\right) 34 \cdot 25+3 \cdot 2^{2} \text { or } 5 \cdot 8(5 \ldots)^{2}+3 \cdot 2^{2} \end{aligned}$ | M1 | FT 'their derived BE' |
| $(\mathrm{AB}=) 6.67(00 .).(\mathrm{m})$ | A1 | Accept an answer that would round to 6.67 (m) <br> Accept an answer of 6.7 (m) provided $\sqrt{ } 44 \cdot 42(\ldots)$ to $\sqrt{ } 44 \cdot 55(\ldots)$ seen in workings |
|  |  | Alternative method: <br> M1 for ( $\left.A D^{2}=\right) 3 \cdot 2^{2}+5 \cdot 5^{2}$ <br> $A 1$ for $A D^{2}=40.49$ or ( $A D=$ ) $\sqrt{40.49}$ or $(A D=) 6 \cdot 3(6 \ldots)$ <br> M1 for $\left(A B^{2} \Rightarrow 40 \cdot 49+2^{2}\right.$ or $6 \cdot 3(6 \ldots)^{2}+2^{2}$ <br> FT 'their derived $A D^{\prime}$ <br> A1 for ( $A B=$ ) 6.67(00..) (m) <br> Accept an answer that would round to 6.67 (m) <br> Accept an answer of $6.7(\mathrm{~m})$ provided $\sqrt{ } 44 \cdot 42(.$.$) to \sqrt{ } 44 \cdot 55(.$. ) seen in workings |
| $\begin{aligned} & (\text { Dist }=6 \cdot 67(00 . .)-0.2=) 6 \cdot 47(00 . .)(\mathrm{m}) \\ & \text { AND } \\ & \text { e.g. 'Yes, it will detect movement at B' } \end{aligned}$ | E1 | FT correct interpretation of 'their 6.67(00..)' - 0.2 provided M1M1 awarded Allow 'Yes as distance $<6.5$ (m)' |

\begin{tabular}{|c|c|c|}
\hline 11(b)
$$
\begin{aligned}
(B A \hat{}=) & \cos ^{-1}(3.2 \div 6 \cdot 67(00 . .) \text { or } \\
& \tan ^{-1}(5 \cdot 8(523 \ldots) \div 3 \cdot 2) \text { or } \\
& \sin ^{-1}(5 \cdot 8(523 \ldots) \div 6 \cdot 67(00 . .))
\end{aligned}
$$
$$
(B A ̂ E=) 61 \cdot 3(306 \ldots)\left({ }^{\circ}\right)
$$ \& M2

A1 \& | M1 for $\cos (B A ̂ E)=(3.2 \div 6 \cdot 67(00 \ldots)$ or $\tan (\mathrm{BAAE})=(5 \cdot 8(523 .) \div 3.2$.$) or$ $\sin (B \hat{A} E)=(5 \cdot 8(523 . .) \div 6 \cdot 67(00 . .))$ |
| :--- |
| FT "their derived 5•8(523..) and 'their derived 6.67(00...)' |
| Do not allow use of 20 for 'their 6.67(00...)' |
| CAO |
| Accept an answer that rounds to $61 \cdot 3\left({ }^{\circ}\right)$ |
| Alternative method: |
| M2 for $\cos ^{-1} \frac{6.67(\ldots)^{2}+3.2^{2}-5 \cdot 8(5 \ldots)^{2}}{2 \times 6.67(\ldots) \times 3.2}$ |
| M1 for $\cos ($ angle $)=$ $\frac{6 \cdot 67(\ldots)^{2}+3.2^{2}-5 \cdot 8(5 \ldots)^{2}}{2 \times 6 \cdot 67(\ldots) \times 3.2}$ |
| FT "their derived $5 \cdot 8(523 .$.$) and 'their$ derived 6.67(00...)' |
| Do not allow use of 20 for 'their 6.67(00...)' |
| A1 for (BÂE =) 61-3(306...) ( ${ }^{\circ}$ ) CAO |
| Accept an answer that rounds to $61 \cdot 3\left({ }^{\circ}\right)$ | <br>

\hline
\end{tabular}

