GCSE MARKING SCHEME

SUMMER 2019

INTRODUCTION

This marking scheme was used by WJEC for the 2019 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

WJEC GCSE MATHEMATICS (NEW)

SUMMER 2019 MARK SCHEME

GCSE Unit 2	MATHEMATICS Foundation Tier	Mark	Comments
1.	(£)5.84 $(£) 4.67$ (£)1.45 (£)7.08	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$	
2.(a)	Pentagon	B1	
2.(b)	Rhombus	B1	Allow equilateral kite, but not kite or parallelogram.
2.(c)	Cylinder	B1	Allow circular prism.
3.(a)	(47,) 94, 141	B1	Ignore additional multiples.
3.(b)	52	B1	
3.(c)	209	B1	
4.(a)	Midpoint unambiguously indicated	B1	Allow $+/-2 \mathrm{~mm}$.
4.(b)	Unambiguous parallel line drawn through C	B1	Allow + - 2°.
5.(a)	9 (and) 16	B2	Allow 3^{2} (and) 4^{2}. B1 for a sum of two square numbers less than 30 seen in workings or two square numbers less than 30 written on the answer line.
$\begin{array}{r} \text { 5.(b) } \\ \bullet \\ \bullet \\ \bullet \end{array}$	Accept suitable explanations, e.g. the sum of three even numbers will be even (and 23 is odd) when you add any amount of even numbers the answer is always even (whilst 23 is odd). (23 is odd, but) even + even + even $=$ even	E1	Allow \cdot even + even $=$ even, - because 23 is odd.
$6 .$	TRUE FALSE TRUE FALSE	B2	For all four correct. B1 for 3 correct.
7.(a)	60 (\%)	B2	B1 for equivalent fraction or decimal ($0.6,3 / 5$, 12/20). If B 2 not awarded, $\mathrm{F} . \mathrm{T}$. their fraction (except for $1 / 2$, $1 / 4$ and $3 / 4$) correctly converted to a percentage for B1.
7.(b)	Multiply by 4	E1	Accept other correct explanations e.g. divide (the number) by 5 then multiply by 20 , double (the number) and double (it) again or divide by $1 / 4$.
7.(c)	Accept suitable explanations, e.g. 0.125 (is greater than) 0.1 5/40 (is greater than) 4/40	E1	Award E1 for other correct explanations e.g. a larger denominator means each part of the whole is smaller, or for correct evaluation of $1 / 8$ and $1 / 10$ of a chosen number.
8.(a)	$65\left(^{\circ}\right.$)	B1	Allow $\pm 2^{\circ}$
8.(b)	225°	B1	
8.(c)	$\begin{aligned} & (\text { Small angle }=180 \div 6=) 30\left({ }^{\circ}\right) \\ & (\text { Large angle }=5 \times \text { Small angle }=) 150\left({ }^{\circ}\right) \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	Check diagram, though answer space takes precedence. F.T. 'their small angle' $\times 5$ or 180 - 'their small angle ', provided answer is less than 180°. If no marks awarded, award B1 for both correct angles given in reverse.

14. Two relevant (sides of one double the other) rectangles or squares considered. Perimeter AND area of $1^{\text {st }}$ rectangle correctly calculated. Perimeter AND area of $2^{\text {nd }}$ rectangle correctly calculated. Clear statement that the perimeter has been doubled but the area has not been doubled (and that Catrin is incorrect.)	M1 B1 B1 A2	Sketch shown or lengths stated. If M0, only the B marks are available. Ignore missing units BUT penalise -1 , once only, for incorrect units. (Applies to these B1 marks.) FT 'their stated values' for both perimeter and area. If not A2, then A1 for correct perimeter statement for 'their values'. OR A1 for correct area statement for 'their values'. Accept statement that area is 4 times as big. Allow for A2 'only the perimeter has been doubled'. (implies that the area has not been doubled.) Also for A2. 'The area is not doubled so Catrin is incorrect' answers the question. In this case Award SC1 and SC1 (instead of B1 and B1) if areas correctly calculated. Correct statements, for BOTH perimeter and area, with no supporting work gains SC1.
15. (18% of $£ 256=) 0 \cdot 18 \times 256$ $=(£) 46.08$ (Larger share $=) \frac{2 \times 46.08}{3}$ $=(£) 30.72$ (To the nearest $10 \mathrm{p}=$) (£)30.7(0)	M1 A1 M1 A1 B1	Allow (£)46.10 FT 'their stated 18% '. If M0 allow SC1 for sight of $(£) 15.36$ FT 'their larger share' (not 'their 18\%') and only if rounding required.
15. Alternative method 1 $\begin{aligned} (\text { Larger share of } £ 256 & =) \quad \frac{2 \times 256}{3} \\ & =(£) 170.66(. .) \end{aligned}$ (18% of $£ 170.66=$) 0.18×170.66 $=(£) 30.72$ (To the nearest 10p =) (£)30.7(0)	M1 A1 M1 A1 B1	Allow (£) 170.70 If M0 allow SC1 for sight of (£)85.33. FT 'their stated larger share'. FT 'their 18\%' (not 'their larger share') and only if rounding required.
15. Alternative method 2 $\begin{array}{r} \text { (Larger share of } 18 \%=) \quad \frac{2 \times 18}{3} \\ =12(\%) \end{array}$ $(12 \%$ of $£ 256=) 0.12 \times 256$ $=(£) 30.72$ (To the nearest $10 p=$) (£)30.7(0)	M1 A1 M1 A1 B1	If M0 allow SC1 for sight of 6(\%). FT 'their derived larger \%'. FT 'their amount' only if rounding required.

\begin{tabular}{|c|c|c|}
\hline \[
\text { 16.(a) } \begin{array}{ll}
\\
\& a=-6 \\
b=-5
\end{array}
\] \& \begin{tabular}{l}
B1 \\
B1 \\
\hline
\end{tabular} \& Values may be seen on the diagram. \\
\hline 16.(b) Correct shape in correct position. \& B3 \& B2 for a correct enlargement in incorrect position. B1 for one correct side in correct position. If no marks allow SC1 for showing all the 'rays' from \((1,2)\). \\
\hline \begin{tabular}{l}
17. \(P(\) Alison chooses letter \(R)=2 / 10\) or equivalent. \\
\(P(\) Sarfraz chooses letter \(R)=1 / 4\) or equivalent. \\
Use of \(2 / 10 \times 100\) OR \(1 / 4 \times 100\) \\
20 AND 25 clearly implying that Sarfraz is the most likely to choose letter \(R\)
\end{tabular} \& B1
B1

M1

A1 \& | B1 for sight of $2 / 10$ if unambiguously for Alison. B1 for sight of $1 / 4$ if unambiguously for Sarfraz. As probability not asked for, allow e.g. '2 chances in 10' and 'one chance in four'. B1 marks may be implied in subsequent work. Calculation may be done in stages. |
| :--- |
| There is no requirement to tick the box as long as there is no contradiction. |
| Do not accept, on its own, e.g. |
| 'Sarfraz has less letters to choose from' for the A1. |

\hline 17. Alternative method $P($ Alison chooses letter R) $=2 / 10$ or equivalent. $P($ Sarfraz chooses letter $R)=1 / 4$ or equivalent. \& B1
B1 \& B1 for sight of $2 / 10$ if unambiguously for Alison. B1 for sight of $1 / 4$ if unambiguously for Sarfraz. As probability not asked for, allow e.g. '2 chances in 10' and 'one chance in four'

\hline | Attempting to give probabilities in a common format. |
| :--- |
| Correct common format |
| e.g. 4/20 AND 5/20 or 0.2 AND 0.25 clearly implying that Sarfraz is the most likely to choose letter R | \& M1

A1 \& | There is no requirement to tick the box as long as there is no contradiction. |
| :--- |
| Do not accept, on its own, e.g. |
| 'Sarfraz has less letters to choose from' for the A1. |

\hline
\end{tabular}

