GCSE MARKING SCHEME

SUMMER 2019

GCSE
MATHEMATICS - UNIT 1 (INTERMEDIATE TIER)
3300U30-1

INTRODUCTION

This marking scheme was used by WJEC for the 2019 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

WJEC GCSE MATHEMATICS

SUMMER 2019 MARK SCHEME

5.(a) Any correct total of 2. e.g. $3+3+3-7$	B1	B0 if any numbers other than 3 and 7 used. B0 if any operation other than + or - used. e.g. 3×3 is not acceptable for $3+3+3$. Allow multi-digit numbers made from 3 or/and 7 . e.g. 33, 37,373 etc.
5.(b) Any correct total of 8. $\text { e.g. } 7-3+7-3$	B1	B0 if any numbers other than 3 and 7 used. B0 if any operation other than + or - used. e.g. 2×7 is not acceptable for $7+7$. Allow multi-digit numbers made from 3 or/and 7 . e.g. 33, 37, 373 etc.
5.(c) Any correct total of 19. $\text { e.g. } \quad 3+3+3+3+7$	B1	B0 if any numbers other than 3 and 7 used. B0 if any operation other than + or - used. e.g. 4×3 is not acceptable for $3+3+3+3$. Allow multi-digit numbers made from 3 or/and 7 . e.g. $33,37,373$ etc.
6.	B1 B1 B2	Allow intent of drawing circles and a rectangle. Two intersecting circles AND labelled A and B AND within a rectangle. Allow missing ' ε ' symbol. For unambiguous indication that the set B consists of 12, 15 and 18 only. $B 0$ if any of these numbers are repeated outside B. All eleven numbers in correct position (with or without a rectangle), with no other or repeated numbers. B1 for six to ten numbers in correct position. Repeated numbers should not be credited. Other numbers may be ignored for this B1 mark.
7.(a) 5(2a-3)	B1	Mark final answer.
7.(b)(i) ($\mathrm{x}=$) 147	B1	Accept embedded answer. Mark final answer.
$\text { 7.(b)(ii) } \begin{aligned} & \\ & \\ & \\ & \\ & \\ 7 f & =5-2 \\ & (f=3 \\ & =3 / 7 \end{aligned}$	B1 B1 B1	F.T. until $2^{\text {nd }}$ error. If FT leads to a whole number answer, it must be shown as a whole number. Otherwise accept a fraction. Mark final answer. Allow 0.43 or 0.429 or $0.428 \ldots$ as a final answer.
7.(c) ' $5 \mathrm{n}-3$ can be even or odd' ticked or implied AND a valid explanation given. e.g. ' $5 \times 3-3=12$ (even) and $5 \times 4-3=17$ (odd)' 'if n is odd you get even (but) if n is even you get odd'	E1	A valid explanation implies ' $5 n-3$ can be even or odd', unless contradicted. Allow e.g. ' $15-3=12,20-3=17$ '. Allow a correct sequence shown e.g. 2, 7, 12, Do not accept ' n can be anything', ' n can be odd or even'. Do not accept an explanation that only uses 5 n . e.g. $' 5 \times 2=10$ (even), $5 \times 3=15$ (odd)'

8. $\begin{aligned} & \text { (Area of the triangle CDE }=\text {) } 14=\frac{4 \times \text { CE }}{2} \\ & \qquad(C E=) 7(\mathrm{~cm}) \\ & \text { (Area ABCE }=7 \times 7=) \quad 49\left(\mathrm{~cm}^{2}\right) \\ & \text { (Area of whole shape }=49+14=) 63\left(\mathrm{~cm}^{2}\right) \end{aligned}$	M1 A1 B1 B1	Lengths may be shown on the diagram. Accept equivalent e.g. $28=4 \times$ CE. FT 'their stated or shown length CE'. FT 'their stated or shown area of square' +14 .
$\begin{aligned} & \text { 8. Alternative method } \\ & \begin{array}{rl} \text { (Area of the triangle } C D E & 14=\frac{4 \times C E}{2} \\ \text { (Area Trapezium } A B C D=) & \\ & (C(7+4)+7] \times 7 \\ & =63\left(\mathrm{~cm}^{2}\right) \end{array} \end{aligned}$	M1 A1 M1 A1	Lengths may be shown on the diagram. FT 'their stated or shown length CE (=CB)' consistently as 'their 7'.
Accuracy of writing.	OC1	For OC1, candidates will be expected to: - present their response in a structured way - explain to the reader what they are doing at each step of their response - lay out their explanation and working in a way that is clear and logical - write a conclusion that draws together their results and explains what their answer means For W1, candidates will be expected to: - show all their working - make few, if any, errors in spelling, punctuation and grammar - use correct mathematical form in their working - use appropriate terminology, units, etc
9.	M1 A1 B1 B1	OR FT 90 - 'their a'. OR FT 90 + 'their b'. OR FT 180 - 'their a

10.(a) For a method that produces 2 prime factors from the set $\{3,3,5,7\}$ before the $2^{\text {nd }}$ error. $\begin{aligned} & 3,3,5,7 \\ & 3^{2} \times 5 \times 7 \end{aligned}$	M1 A1 B1	C.A.O. For sight of the four correct factors (Ignore 1s) F.T. 'their primes' provided at least one index form used with at least a square. Allow $\left(3^{2}\right)(5)(7)$ and 3^{2}.5.7 Inclusion of 1 as a factor gets B0.
10.(b) $42=2 \times 3 \times 7$ or equivalent correct strategy. $(\mathrm{HCF}=) \quad 21$	M1 A1	M1 for sight of 2, 3, 7 'together'. (Not for $2 \times 21,3 \times 14$ and 6×7.) (Not for just listing all factors 1,2,3,6,7,14,21.) M1A0 for 3×7. FT 'their answer to 10(a)' only if of equivalent difficulty (at least two common prime factors).
11. -13 Scale on y-axis '2cm square $\equiv 10$ units'. At least 7 correct plots and no incorrect plots. A smooth curve drawn through their plots.	B1 B1 P1 C1	F.T. 'their ($-2,-13$)' AND 'their uniform scale' if possible. Allow $\pm 1 / 2$ a small square'. F.T. 'their 8 plots'. (Only if an uniform scale used.) OR a curve through the 7 given plots and ($-2,-13$). Allow intention to pass through their plots (within 1 small square, either horizontally or vertically of the point).
12. $\begin{aligned} & \text { (Angle AÔB or exterior angle }=) \frac{360}{8}\left({ }^{\circ}\right) \\ & =45\left({ }^{\circ}\right) \\ & \qquad \begin{aligned} (\mathrm{OÂB}=) \frac{180-45}{2} & =67 \cdot 5\left({ }^{\circ}\right) \end{aligned} \end{aligned}$	M1 A1 M1 A1	Answers/working may be seen on diagram. Sight of 45 (even e.g. OÂB $=45$) gains M1A1. FT 'their 45^{\prime} (but not 60°).
12. Alternative method 1 (Sum of interior angles $=$) $(8-2) \times 180^{\circ}$ or equivalent $=1080\left({ }^{\circ}\right)$ $(O A \hat{B}=) 1 / 2 \times(1080 \div 8)$ or equivalent $=67 \cdot 5\left(^{\circ}\right)$	M1 A1 M1 A1	(Interior angle =) $135\left({ }^{\circ}\right.$) implies M1A1 FT 'their interior angle sum' ($\neq 1440$)
12. Alternative method 2 (Using 16 right-angled triangles.) (Angle at $O=$) $360 / 16$ $\left(O \hat{A} B \Rightarrow 180-90-22 \cdot 5\left(^{\circ}\right)\right.$ $=67.5\left(^{\circ}\right)$	M1 A1 M1 A1	FT 'their 22.5'.

\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
13. \\
Correct construction method for perpendicular bisector with line drawn. \\
Correct construction method for \(60^{\circ}\) at point A. \\
Correct construction method for bisecting an angle with line drawn. \\
Point P clearly identified
\end{tabular} \& B1
B1
B1
B1 \& \begin{tabular}{l}
Correct construction arcs must be seen for the first three B1 marks. \\
Two pairs of Intersecting arcs (centres at A and B) \\
Allow if drawn at point \(B\). \\
Allow B1 for correct method (tolerance will be penalised with final B0). \\
FT 'their angle of \(60^{\circ}\) ' drawn at point \(A\) or point \(B\). \\
C.A.O. within tolerance. \\
Intersecting lines alone with no indication that this is point \(P\) is not sufficient for this \(B 1\). \\
Do not penalise if both possible positions shown. \\
Final B1 may be awarded after B0B0B0.
\end{tabular} \\
\hline \begin{tabular}{l}
13. Alternative method \\
Correct construction method for \(60^{\circ}\) at point \(A\) (or B). \\
Correct construction method for bisecting the angle at \(A\) (or \(B\)) with line drawn. \\
Repeating the above two stages at \(B\) (or \(A\)) \\
Point P clearly identified
\end{tabular} \& \(B 1\)
\(B 1\)
\(B 1\)
\(B 1\) \& \begin{tabular}{l}
Correct construction arcs must be seen for the first three B1 marks \\
Allow B1 for correct method (tolerance will be penalised with final BO). \\
C.A.O. within tolerance. Intersecting lines alone with no indication that this is point \(P\) is not sufficient for this B1. \\
Do not penalise if both possible positions shown. Final B1 may be awarded after B0B0B0.
\end{tabular} \\
\hline \begin{tabular}{l}
14. Sight of any TWO of 30, 2 or 0.5 \\
OR Sight of any TWO of 30,8 or \(0 \cdot 5\) as appropriate approximations. \\
\(\frac{30 \times 8}{0.5}\) or equivalent.
\end{tabular} \& B1
M1

A1 \& | Allow $30 \cdot 2$ for 30 . |
| :--- |
| Equivalent e.g. $\frac{30 \times 2 \times 2 \times 2}{1 / 2}$ or $\frac{30 \times 2^{3}}{0.5}$ |
| Must be seen, but allow if attempted calculation done in steps. |
| M0 for exact calculation. |
| C.A.O. Allow $483 \cdot 2$ if $30 \cdot 2$ used. |

\hline
\end{tabular}

15.(a) 0.32	B1	
$\begin{aligned} & \text { 15.(b) Sample number from Anglesey on } 2^{\text {nd }} \text { day } \\ & =3000 \times 0.42=1260 \\ & \text { (Rel.Fqu. for two days }=\frac{640+1260}{2000+3000} \\ & =0.38 \end{aligned}$	M1 A1 M1 A1	Allow M1A1 for sight of 1260 e.g. 1260/3000 FT 'their 1260'.
15.(c) 'Answer to part (b)' noted AND Valid explanation e.g. 'more people sampled'	E1	Explanation must refer to the sample being the largest. Allow e.g 'from both days', 'number of people added', 'frequencies are added'. Do not accept 'relative frequencies are added'.
16.(a)(i) $\quad 425 \mathrm{~kg}$	B1	
16.(a)(ii) 21.5 s	B1	
16.(a)(iii) 83 people	B1	
16(b) $\quad 2.38 \times 10^{-2}$	B2	B1 for sight of a correct answer but not in standard form. e.g. 23.8×10^{-3} or 0.0238 .
17.(a) $5 \mathrm{n}<3 \mathrm{n}+7$ or equivalent ISW	B2	$2 \mathrm{n}<7$ OR $\mathrm{n}<7 / 2$ implies B2. Ignore use of a different letter e.g. $5 \mathrm{x}<3 \mathrm{x}+7$. Use of ' \leq ' is B1. B1 for sight of $3 n+7$ in an inequality.
17.(b) $\quad 2 \mathrm{n}<7$ OR $\mathrm{n}<7 / 2$ $($ Greatest amount $=) \quad(£) 3$	B1 B1	FT 'their inequality' if of equivalent difficulty. May be seen in part (a). FT 'their $\mathrm{n}<\mathrm{k}$ '. BO if they have ' $\mathrm{n}>\mathrm{k}$ '. B0 if it leads to $n<1$ An answer of ($£$)3 gains B1B1 (unless from incorrect algebra work).
18.(a) 0.7 shown for 'Does not go on tour bus'. Use of $0.3 \times \ldots \ldots=0.24$ $\mathrm{P}($ sees show $)=0.8$ Second set of branches $0 \cdot 8,0 \cdot 2,0 \cdot 8,0 \cdot 2$	$\begin{aligned} & \hline \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \\ & \text { A1 } \end{aligned}$	Allow M1A1 if $0 \cdot 8$ seen on one the 'sees show' branches. FT 'their $0 \cdot 8$ ' only if M1 awarded. ($0 \cdot 24,0.76,0 \cdot 24,0.76$ is MOAOAO)
18.(b) $0.7 \times 0.2=0.14 \quad$ ISW	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	FT 'their values' if both between 0 and 1.

