GCSE MARKING SCHEME

SUMMER 2019

GCSE
MATHEMATICS - NUMERACY UNIT 1 - HIGHER TIER 3310U50-1

INTRODUCTION

This marking scheme was used by WJEC for the 2019 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

WJEC GCSE MATHEMATICS - NUMERACY (3310U50-1)

SUMMER 2019 MARK SCHEME

3(a) (Cost to Sam) 200×25 (=£5000)	M1	
(Number of trees Sam expects to sell is)	M1	
$\begin{aligned} 200-0.22 \times 200 \text { or } 200 \times 0.78 \\ \text { (=) } 156 \text { (trees) } \end{aligned}$	A1	Depends only on previous M1
(Money from sales of trees is $40 \times 156=£$) 6240	B1	FT the number of trees sold, i.e. $40 \times$ 'their 156 '
(Expected profit is $£ 6240-£ 5000=$) (£) 1240	B1	FT 'their (40 \times 'their 156 ') - 5000 correctly evaluated
3(a) Alternative method: (Number of trees Sam expects to sell is) $200-0.22 \times 200$ or 200×0.78		
(=) 156 (trees)	A1	
(Expected profit) $156 \times(40-25)$	M2	FT 'their 156' M1 for $156 \times(40-25)-\ldots .$. or
$-(200-156) \times 25$ (£) 1240	A1	$C A O \quad \cdots-(200-156) \times 25)$
3(b) A suitable diagram with at least 3 hexagons (or 2	E1	ISW
extra hexagons) shown to tessellate OR Sight of $3 \times 120^{\circ}=360^{\circ}$ or equivalent		A suitable diagram will involve 3 hexagons meeting at a point at least once, the 6 sides of the hexagons must be shown
		Allow if a correct diagram given with angles unlabelled or incorrectly labelled
		Do not accept if only the exterior angles (labelled correctly or incorrectly) of the given hexagon shown, need to show further hexagons

4(a) Sight of (Milford Haven to Ruabon) $90 \times 11 / 3$ OR (Ruabon to Swansea) $80 \times 11 / 4$	M1	For the appropriate idea of speed \times time. Allow sight of - 90×80 (minutes) - 80×75 (minutes) - $\quad 90 \times 1.3(3)$ - $\quad 90 \times 1.2(0)$ - 80×1.15
(Milford Haven to Ruabon) 120 (miles) AND (Ruabon to Swansea) 100 (miles)	A2	CAO A1 for $90+30$ or $80+20$ or equivalent only provided there is no evidence of any misconception, e.g. $(80+35)$
(Total distance) 220 (miles)	B1	FT provided at least M1, A1 previously awarded
Organisation and communication	OC1	For OC1, candidates will be expected to: - present their response in a structured way - explain to the reader what they are doing at each step of their response - lay out their explanations and working in a way that is clear and logical - write a conclusion that draws together their results and explains what their answer means
Writing	W1	For W 1 , candidates will be expected to: - show all their working - make few, if any, errors in spelling, punctuation and grammar - use correct mathematical form in their working - use appropriate terminology, units, etc.

4(b) (Total time is) 155 (minutes), or for sight of 80 (minutes) and 75 (minutes) (Total fuel needed would be) $\begin{gathered} 155 \times 0.4 \times 4.55, \text { or } \\ 80 \times 0.4 \times 4.55+75 \times 0.4 \times 4.55 \end{gathered}$ 282(.1) (litres)	M1	FT 'their number of minutes' provided both parts of the journey are considered and both parts take > 60 minutes Use of ' $\div 2.5^{\prime}$ ' is equivalent to ' $\times 0.4$ ' (referred to as 'a product' in the details for M1 and A1) M1 for sight of - product of any two of $155,0.4$ and 4.55 seen, OR - product of any two of $80,0.4$ and 4.55 seen AND product of any two of $75,0.4$ and 4.55 seen AND intention to sum these two products CAO, accept 280 (litres) only if 282(.1) seen A1 for sight of any one of the following, provided at least M1 previously awarded: - 0.4×705.25 - 0.4×364 - 0.4×341.25 - 4.55×32 - 4.55×30 - 4.55×62 - 1.82×155 - 1.82×80 - 1.82×75 OR A1 for one of the two stages of evaluating products calculated accurately

5(a)(i) 2.5×10^{7}	B1	
5(a)(ii) $9600 \mathrm{~m}^{3}$	B1	
5(b) (Volume seen or implied) $59700000\left(\mathrm{~m}^{3}\right)$ or $60000000\left(\mathrm{~m}^{3}\right)$ OR (Surface area seen or implied, used as) 4.5(4) or 5 Average depth calculation, e.g. - $59700000 \div 4540000$ - $60000000 \div 4500000$ - $6000 \div 450$ - $600 \div 45$ - $60000000 \div 5000000$ - $60 \div 5$ OR sight of a trial and improvement method with suitable correct calculation(s): - $4.54 \times 12=54.48$ and $4.54 \times 13=59.02$ - $4.54 \times 13=59.02$ and $4.54 \times 14=63.56$ - \quad single calculation (not $\times 13$) between $4.54 \times 12.1=54.934 \text { and }$ $4.54 \times 13.1=59.474$ - $4.5 \times 12=54$ and $4.5 \times 13=58.5$ - $4.5 \times 13=58.5$ and $4.5 \times 14=63$ - single calculation between $4.5 \times 13.1=58.95$ and $4.5 \times 13.4=60.3$ - $5 \times 12=60$	B1	Accept using index notation or standard form, e.g. $59.7 \times 10^{6}, 5.97 \times 10^{7}, 60 \times 10^{6}, 6 \times 10^{7}$ Accept exact or correctly rounded volume written in m^{3}, i.e. do not accept, e.g. 59000000 Ignore any units given FT e.g. 'their volume' $\div 4540000$ Accept written as a fraction Accept exact or rounded values provided estimates are reasonable Watch for compensating errors, which is MO and AO
Answer in the range $12(\mathrm{~m})$ to $13.5(\mathrm{~m})$	A1	CAO, answer must be in this range, no FT

6(a)(i) Maesystrad AND 46 (minutes)	B1	
6(a)(ii) Rhewlteg AND gives decision used unambiguously as median	B1	Accept decision based on median without the use of the term 'median', e.g. 'half of them took more than 39 minutes' Allow, e.g. - Rhewlteg as median is 38 (minutes) (from misreading the scale correct median is 39 minutes) - Rhewlteg as average is 39 (minutes) Do not accept contradictions, decision needs to be solely based on the median
6(a)(iii) Rhewlteg AND 25 (minutes)	B1	
6(a)(iv) 'Don't know' indicated or unambiguously implied AND reason, e.g. 'not told', 'it doesn't say (on the diagam)', 'doesn't give you the number of students/pupils', 'doesn't tell you how many were asked', 'it is about travel times (not number of students)', 'only gives the timings', 'it shows distribution of travel times, not number of students', 'only shows proportions of the students'	E1	Allow, e.g. 'doesn't give you the frequency (of students)', Do not accept, e.g. 'can't tell', 'not enough data', 'shows only median, range and measures of spread'
6 (b)(i) 120 (students)	B1	
6(b)(ii) 23 (minutes)	B1	
7(a) Austria	B1	
7(b) United Kingdom	B1	
7(c) Argentina with appropriate working, e.g. Sight of 13 to 16 (for Argentina) AND 3 to 4 (for Canada)	B2	Accept unlabelled population density, provided not ambiguous or from incorrect working B1 for approximate population $/ \mathrm{km}^{2}$ (for Argentina) 13 to 16 OR (for Canada) 3 to 4 B0 for unsupported answer 'Argentina' or if inappropriate working given, e.g. - 4×10000000 - 'Canada 34000 000, Argentina 40000 000’
8(a) $401\left(\mathrm{~cm}^{2}\right)$	B1	
8(b) A correct evaluation of $\left(4^{7 / 2}=\right) 128$ OR $\quad\left(4^{5 / 2}=\right) 32$ $\begin{aligned} \left(400+4^{7 / 2}\right)-\left(400+4^{5 / 2}\right) & \\ \text { OR } 4^{7 / 2}-4^{5 / 2} & \text { or equivalent } \\ & =96\left(\mathrm{~cm}^{2}\right) \end{aligned}$	B1 M1 A1	or sight of appropriate 528 OR 432 $(528-432 \text { OR } 128-32)$ CAO

9.		Accept use of $0.24 \dot{9}$ and $284 . \dot{9}$ throughout, but do not accept use of 0.249 and 284.9
Use of 275 (volts) AND 285 (volts) OR Use of 0.15 (amps) AND 0.25 (amps)	B1	
$\frac{v}{1}=R$ (Least possible value of $\mathrm{R}=$)	B1	May be implied in further working
$\frac{275}{0.25}$	M1	$\begin{aligned} & \text { FT 'their } 275 \text { ' provided } 270 \leq \mathrm{V}<280 \text { AND } \\ & \text { 'their } 0.25 \text { ' provided } 0.2<1 \leq 0.3 \end{aligned}$
= 1100 (ohms)	A1	CAO
(Greatest possible value of $R=$) $\frac{285}{0.15}$	M1	FT 'their 285 ' provided $280<\mathrm{V} \leq 290$ AND 'their 0.15 ' provided $0.1 \leq 1<0.2$
$=1900$ (ohms)	A1	CAO
$\begin{aligned} & \text { 10. } A O^{2}=100^{2}-80^{2} \quad \text { or }(A O=) \sqrt{100^{2}-80^{2}} \\ & A O^{2}=3600 \quad \text { or }(A O=) \sqrt{3600} \text { or }(A O=) 60(\mathrm{~cm}) \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	Allow use of $20 \times \sqrt{ }\left(5^{2}-4^{2}\right)$ If $\sqrt{ } 3600$ evaluated, mark final answer
$A E^{2}=110^{2}+3600$ or equivalent $\quad O R$ $(\mathrm{AE}=) \sqrt{110^{2}+60^{2}}$ or equivalent	M1	FT 'their derived 3600 ' or 'their derived 60 ' but not use of 100 or 80 for AO
$A E=\sqrt{15700}(\mathrm{~cm}) \quad$ ISW	A1	Or 10157
$\begin{aligned} A O^{2}= & 100^{2}-80^{2} \text { or } \quad(A O=) \sqrt{100^{2}-80^{2}} \\ & (A E=) \sqrt{100^{2}-80^{2}+110^{2}} \end{aligned}$	M1 M2	M1 for $100^{2}-80^{2}+110^{2}$
AE $=\sqrt{ } 15700(\mathrm{~cm})$ ISW	A1	Or 10V157
		If no marks awarded,
		SC2 for $\sqrt{100^{2}+80^{2}+110^{2}}$ leading to an answer of $\sqrt{28500}$ ISW, or SC1 for $100^{2}+80^{2}+110^{2}$

\begin{tabular}{|c|c|c|}
\hline $$
\begin{aligned}
& \begin{array}{l}
11(\mathrm{a}) \\
\text { (Area }=) \frac{1}{2} \times 2 \times(0+0+2(2+4+4.4+4+2.6)) \\
\text { OR } \frac{1}{2} \times 2 \times(4+8+8.8+8+5.2) \\
= \\
(\text { Volume }=) 34 \times 3\left(\mathrm{~mm}^{2}\right)
\end{array} \\
& =204\left(\mathrm{~mm}^{3}\right)
\end{aligned}
$$ \& M2
A1
M1

A1 \& | Award M1 if only one reading incorrect |
| :--- |
| FT from M1 |
| FT from M1 or M2 for a possible M1A1 If no marks previously awarded, FT 'their 34' provided an attempt made to use the trapezium rule for a possible M1 only |

\hline Alternative method:

$$
\begin{aligned}
& \frac{(0+2)}{2} \times 2+\frac{(2+4)}{2} \times 2+\frac{(4+4.4)}{2} \times 2+ \\
& \begin{array}{l}
\frac{(4.4+4)}{2} \times 2+\frac{(4+2.6)}{2} \times 2+\frac{(2.6+0)}{2} \times 2 \\
{[2+6+8.4+8.4+6.6+2.6]}
\end{array}=34\left(\mathrm{~mm}^{2}\right) \\
& (\text { Volume }=) 34 \times 3 \quad(\times 2)
\end{aligned}
$$

$$
=204\left(\mathrm{~mm}^{3}\right)
$$ \& M2

A1
M1

A1 \& | Each area may be seen as the sum of the area of a rectangle and a triangle |
| :--- |
| M1 for the sum of these 6 areas with one error (maybe repeated) in reading the scale OR with 1 incorrect term |
| FT from M1 or M2 |
| FT from M1 or M2 for a possible M1A1 If no marks previously awarded, FT 'their 34' provided an attempt made to sum the 6 areas for a possible M1 only |

\hline | 11(b) $30 \times$ (number of pendants made) $\div 240$ or equivalent |
| :--- |
| (Number of circular pendants in sample =) 12 Sight of any 2 of $6.5,3.7(5), 7.7(5)$ or equivalents |
| (Number in sample $=$) 6, 12, 4, 8 | \& M1

A1
A1

B1 \& | e.g. (number of pendants made) $\div 8$ |
| :--- |
| Sight of this calculation for any shaped pendant |
| Accept mixed numbers |
| Needs to be from correct working |
| Can come from M1A1A0 |
| An unsupported 6, 12, 4, 8 is awarded M1A1A0B1 |
| An unsupported 7, 12, 4, 8 is awarded M1A1A0B0 |

\hline
\end{tabular}

	B1 M1 m1 A1 A B2	FT 'their derived volume of sphere' e.g. radius $^{2}=\frac{36000 \pi}{\pi \times 40(\times 5)}$ CAO For B2, FT 'their derived 180 ' provided their 'b' is as small as possible and that 'their derived 180' can be simplified If 'their derived 180 ' is a square number, then B1 only can be awarded for the correct square root of 'their 180' For B1, FT 'their derived 180' B1 for writing 180 as a product of 2 or more factors where one of the factors OR the product of a pair of their factors is a square number e.g. $4 \times 45,3 \times 3 \times 20$, OR B1 for writing $\sqrt{ } 180$ as a product of 2 or more factors where one of the factors OR the product of a pair of their factors is a whole number $\text { e.g. } \sqrt{ } 5 \times \sqrt{ } 12 \times \sqrt{ } 3$

$\begin{aligned} & \text { 12(a)(i) e.g. } 100 x=8.333 \ldots, 1000 x=83.333 \ldots \text { AND } \\ & \text { an attempt to subtract both sides } \\ & =\frac{75}{900} \text { or } \begin{aligned} 9900 & \text { or } \\ & \frac{8325}{99900} \end{aligned} \text { or equivalent } \\ & =\frac{1}{12} \end{aligned}$	M1 A1 A1	Allow A1 for e.g. 7.5/90 FT from M1A0 provided of equivalent difficulty
$\begin{aligned} & \begin{array}{l} 12(\mathrm{a})(\mathrm{ii)} \\ \begin{array}{c} \text { Area }=) \\ 12 \end{array} \times \pi \times 120^{2} \\ =1200 \pi\left(\mathrm{~cm}^{2}\right) \end{array} \end{aligned}$	M1 A1	FT 'their 1/12' from (i) throughout If no marks awarded, SC1 for ($11 / 12 \times \pi \times 120^{2}$ or equivalent $=$) $13200 \pi\left(\mathrm{~cm}^{2}\right)$
12(b) Sight of $\frac{x}{360} \times 2 \times \pi \times 36$ or equivalent $\underline{x} \times 2 \times \pi \times 36+90=200 \quad$ or equivalent 360 $360 \times 2 \times \pi \times 36=200-90$ or equivalent $\begin{gathered} \frac{x}{5} \times \pi=200-90 \text { OR } \quad(x=) \frac{(200-90) \times 360}{2 \times \pi \times 36} \\ x=\frac{550}{\pi} \end{gathered}$	B1 M1 m1 m1 A1	e.g. $\frac{x}{5} \times \pi$. Accept any symbol for x These two m 1 marks can be done in any order For isolating the x term For fully simplifying the fraction correctly OR for isolating x Needs to come from convincing work from M1m1m1 e.g. $\frac{39600}{72 \pi} \frac{110 \times 360}{72 \pi}$ If no marks awarded or B1 only awarded, then SC1 for $\underline{550} \times 2 \times \pi \times 36$ or equivalent 360π AND possibly another SC1 for convincing work showing that this simplifies to 110 , and that $110+90=200$

