GCSE MARKING SCHEME

SUMMER 2019

GCSE
MATHEMATICS - NUMERACY UNIT 2 - HIGHER TIER 3310U60-1

INTRODUCTION

This marking scheme was used by WJEC for the 2019 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

WJEC GCSE MATHEMATICS - NUMERACY (3310U60-1)

SUMMER 2019 MARK SCHEME

GCSE Mathematics - Numeracy Unit 2: Higher Tier	Mark	Comments
```1. Sight of 9.95(m) or 99.95(m) or 995 (cm) or 9995 (cm) (Least length) 9.95+99.95 + 9.95 or equivalent in cm 119.85 (m)```	B1   M1   A1	If units are given they must be correct   FT 'their least measurements' $x$ and $y$, provided $9.9(\mathrm{~m}) \leq \mathrm{x}<10(\mathrm{~m})$ and $99.9(\mathrm{~m}) \leq \mathrm{y}<100(\mathrm{~m})$ as appropriate   CAO   Award all 3 marks for a correct response   If no marks, award SC1 for an answer of 118.5(m) or   $119.985(\mathrm{~m})$ or $(9.95+9.95+99.5=) 119.4(\mathrm{~m})$
1. Alternative method: $100+10+10-3 \times 0.05$ or equivalent in cm 119.85 ( $m$ )	$\begin{aligned} & M 2 \\ & \text { A1 } \end{aligned}$	M1 for sight of -5 cm or $-0.05(\mathrm{~m})$ used CAO   If no marks, award SC1 for an answer of 119.7.(m)
2(a)(i) (Volume) $\pi \times 3.6^{2} \times 9.3$   Answer in the range $378.4\left(\mathrm{~cm}^{3}\right)$ to $378.7\left(\mathrm{~cm}^{3}\right)$ or $379\left(\mathrm{~cm}^{3}\right)$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \end{aligned}$	Mark final answer
2(a)(ii) 189 (g) or an answer in the range 189.2 (g) to 189.5 (g)	B1	Allow rounding or truncation to whole number or a number of decimal places FT, for a similar range, 'their 379' accurately divided by 2
2(b) (Height is) $9.3 \times 4.2 \div 3.6$ or $1.16666 \ldots \times 9.3$ or $9.3 \div(3.6 \div 4.2)$ or equivalent 10.85 (cm)	M1   A1	Allow M1 for $1.16 \times 9.3$ or $1.17 \times 9.3$ or $9.3 \div 0.85(7 \ldots$...)   Allow answers in the inclusive range 10.78 (cm) to 10.95 (cm)

2(c) Comparison of salt and sugar, e.g.

- (Salt) 6 AND (Sugar) $\underline{90}$
1.8511 .7
- (Salt) $\left(100 \times 1.85\right.$ AND (Sugar) $(100 \times) \frac{11.7}{90}$
- (Recommend) 1:15 AND (Beans)1:11.7 $\div 1.85$

Conclusion SALT and an accurate calculation of comparison, e.g.
3(.24...) AND 7(.69...),
0.3(083...) AND 0.13,

30(.83....\%) AND 13(\%),
31(\%) AND 13(\%),
0.31 AND 0.13

1: 15 AND 1 : 6(.32...)

B1	Or equivalent
	Ignore any units given

B2 Ignore any units given and any additional statements if SALT unambiguously concluded with appropriate calculations evaluated correctly

Accept rounded or truncated answers
Ignoring units, B1 for an accurate calculation of
comparison, e.g.
3(.24...) AND 7(.69...),
0.3(083...) AND 0.13,

30(.83...\%) AND 13(\%),
31(\%) AND 13(\%)
1: 15 AND 1 : 6(.32...)
OR
B1 for SALT with one of the two comparative values correct (i.e. as above with 'OR')

2(c) Alternative method 1:
Conclusion SALT with evidence of a full method looking at the same number of portions, including ratio methods, e.g.
$1.85 \times 3$ (portions) $\approx 6$ (g)

$$
\text { AND } 11.7 \times 8(\text { portions }) \approx 90(g)
$$

2(c) Alternative method 2:

Full method with one calculated proportion, compared
B1
with same proportion of the other ingredient, e.g.

- $31 \%$ salt with $0.31 \times 90$
- $13 \%$ sugar with $0.13 \times 6$

Conclusion SALT and an accurate calculation of comparison, e.g.

- 27.9 (g) (sugar which is $>11.7 \mathrm{~g}$ in a portion)
- $\quad 0.78$ (g) (salt which is $<1.85 \mathrm{~g}$ in a portion)

Allow approximately or similar words for ' $\approx$ '
B2 for evidence of, e.g.
$1.85 \times 3$ (portions) $\approx 6(g) \quad$ and
$11.7 \times 8($ portions $) \approx 90(g)$
OR
B1 for evidence of, e.g.
$1.85 \times 3$ (portions) $\approx 6(\mathrm{~g})$ or
$11.7 \times 8($ portions $) \approx 90(g)$

Ignore any units given and any additional statements if SALT unambiguously concluded with appropriate calculations evaluated correctly

B1 for appropriate calculations evaluated correctly, with no or incorrect conclusion

3(a) (Number of units is) 800	B1	
(Electricity cost is) $800 \times 0.23$ or $800 \times 23$	M1	FT 'their 20950-20150', must be from attempting this subtraction
(£)184 or 18400(p)	A1	If units are given they must be correct Accept $£ 184.00$ p, do not accept $£ 184$ p
(Standing charge + electricity) (£) 208 or 20800(p)	B1	FT 24 + 'their 184' provided units are consistent May be in implied or embedded in further work, e.g. if $184 \times 1.05+24$ seen and calculated correctly to (£)217.2(0)
(Total bill including VAT at 5\%) $1.05 \times 208$ or $1.05 \times 20800$ or equivalent	M1	FT 'their (£)208' or 'their 20800(p)', including if the standing charge is omitted (i.e. ( $£$ ) 184 used) Allow if standing charge is added after adding VAT to the electricity cost
(£)218.4(0) or 21840(p)	A1	CAO
(Budget per month $£ 218.40 \div 3=$ ) (£)72.8(0) or 7280(p)	B1	FT 'their total bill' $\div 3$ provided at least 2 marks previously awarded   Allow rounded up to the nearest $£$   On FT allow rounding to 10 p, or rounding up to the nearest $£$
		(Note: FT answers from   - one month standing charge $(£) 201.6(0)) \div 3=(£) 67.2(0)$   - standing charge omitted $(£) 193.2(0)) \div 3=(£) 64.4(0))$
3(a) Alternative method:		Watch for stages in other orders, check for embedded equivalent stages
(Number of units is) 800	B1	
(Electricity cost is) $800 \times 0.23$ or $800 \times 23$	M1	FT 'their 20950-20150', must be from attempting this subtraction
(£)184 or 18400(p)	A1	If units are given they must be correct Accept $£ 184.00$ p, do not accept $£ 184$ p
(Budget before VAT 184 $\div 3+24 \div 3=$ (£) 69.33(3..)	B1	FT 'their 184'+ 8 provided units are consistent May be implied or embedded in further work, e.g. if $(184 \div 3) \times 1.05+8$ seen and calculated correctly to (£)72.4(0)
(Total bill including VAT at 5\%)   $1.05 \times(184 \div 3+24 \div 3)$ or equivalent	M2	FT 'their $184 \div 3+24 \div 3$,   M1 for either of the following:
(Budget per month) (£)72.8(0) or 7280 (p)	A1	FT from M2 or M1   Allow rounded up to the nearest $£$   On FT allow rounding to 10p, or rounding up to the nearest $£$


Organisation and communication   Writing	OC1	For OC1, candidates will be expected to:   - present their response in a structured way   - explain to the reader what they are doing at each step of their response   - lay out their explanations and working in a way that is clear and logical   - write a conclusion that draws together their results and explains what their answer means   For W1, candidates will be expected to:   - show all their working   - make few, if any, errors in spelling, punctuation and grammar   - use correct mathematical form in their working   - use appropriate terminology, units, etc.
$\begin{aligned} & \text { 3(b) } 500 \times 1.022^{5} \times 1.016^{15} \\ & \left(500 \times 1.022^{5}=557.473 \ldots\right) \\ & \left(500 \times 1.016^{15}=634.418 \ldots \text { or } 634.42\right) \end{aligned}$   (£) 707.34	M3	OR equivalent method to increase by $2.2 \%$ and to increase by $1.6 \%$ on different amounts for appropriate number of years   M2 for sight of either $\times 1.022^{5}$ or $\times 1.016^{15}$ or equivalent calculations OR   M1 for sight of either $\times 1.022$ or $\times 1.016$ or equivalent calculations   Mark final answer, CAO, accepting answers in the range (£) 707.33 to (£) 707.35   (Note: Sight of $(£) 511$ or $(£) 555$ implies $500 \times 1.022$, from working with $2.2 \%$ of $£ 500, \mathrm{M} 1$ is awarded)
4(a)(i)   (Support12 $=$ ) $0.9^{2}+1.1^{2}$   Support $^{2}=2.02$ or (Support1 =) $\sqrt{2} 2.02$   (Support $1=$ ) $1.4(2 \ldots \mathrm{~m})$	M1   A1   A1	Scale drawings are not accepted   Do not accept rounded to 2 , unless final answer is 1.42(1... m)**   FT from M1 for the correctly evaluated square root of 'their 2.02' provided 'their answer' > 1.1 (m)
$\begin{aligned} & \text { 4(a)(ii) } \sin \text { base angle }=\frac{1.1+0.8}{2.6} \\ & \sin ^{-1} \frac{1.1+0.8}{2.6} \text { or } \sin ^{-1} 0.73(0769 \ldots) \\ & \text { (Base angle }=) 46.95\left(\ldots{ }^{\circ}\right) \text { or } 47\left(^{\circ}\right) \end{aligned}$	M1   m1   A1	OR alternative full method using Pythagoras' theorem then cos or tan   OR FT correct statement for 'their inverse trig ratio'   Allow 46.88(... ${ }^{\circ}$ ) or $46.9\left({ }^{\circ}\right)$   ISW unless subtracted from $90^{\circ}$   If no marks, award SC1 for an answer of $50.7\left({ }^{\circ}\right)$ or $51\left({ }^{\circ}\right)$ from working with Support 1


4(b) (Discount cost of bricks)   ( $516-8 \times 22.5(0)=$ )   (£) 336 $100 \times 336 \div 80 \text { or } 100 \times \frac{336}{80}$   (£) 420	B1 M1 A1	FT 'their $516-8 \times 22.5(0)$ ' provided $\neq 516$ and $\neq 180$ for M1 and possible A1   If no marks, award   SC2 for ( $516 \div 0.8-180=$ ) (£) 465 OR   SC1 for ( $516 \div 0.8=$ ) (£) 645 or   $(100 \times 180 \div 80=)(£) 225$
5(a)(i) $1800 \leq x<2000$	B1	Accept '(£)1800 to (£)2000', or '(£)1800-(£)2000'
5(a)(ii) Reason based on agreement due to the 4 people earning $£ 5800$ to $£ 7800$ per month or the majority of lower wages, e.g.   'the data is skewed',   'only a few of the employees will earn more than the mean wage',   'because most people employed are in the lowest 2 groups of the monthly wage' 'as the majority earn between 1800 and 2100 '	E1	Allow, e.g.   'because there is a great difference between the monthly wages',   'the big numbers would affect the mean', 'more than half are in the first group'   Do not accept, e.g.   'she doesn't know the exact values',   'using the median would be better',   'because there are no employees that have between   2400 and 5800 monthly wage',   'there are 64 in the first group'
5(b)(i) (2200, 48) joined to $(2400,72)$ joined to $(3000$, 80)	B2	Joined with a curve or a straight line   B1 for a cumulative graph with either of the following:   - correct plots but not joined,   - 'their 2 plots' joined provided 1 plot 'correct' including FT plot at ( $3000,48<y \leq 80$ )
5(b)(ii) £2160	B1	
5(b)(iii) $\quad 22.5(\%)$ OR answer from correct working in the range $21(.25 \%$ ) to $23.75(\%)$ or $24(\%)$	B2	Working $\frac{17}{80} \times 100$ to $\frac{19}{80} \times 100$   B1 for sight of $\frac{17}{80}$ to $\frac{19}{80}$


6. Morgannwg bank $\begin{array}{r} 1.0041^{12}-1 \text { OR }\left(1+\frac{0.0492}{12}\right)^{12}-1 \\ =0.0503(\ldots) \text { or } 5.03(\ldots) \% \end{array}$   Banc Gwynedd $\left(1+\frac{0.0492}{4}\right)^{4}-1$ $=0.0501(\ldots) \text { or } 5.01(\ldots) \%$   (Answer =) 0.02\%	M1   M1   A1   B1	Do not accept 0.0503(...) \% unless corrected in further work   Do not accept 0.0501(...) \% unless corrected in further work   FT 'their 0.0503(...) or 5.03(...)\%' AND FT 'their 0.0501(...) or 5.01(...)\%' provided at least one M1 mark awarded and final answer written correct to 2 d.p
Alternative method: $\begin{gathered} \text { Amount } \times 1.0041^{12}-\text { amount } \times\left(1+\frac{0.0492}{4}\right)^{4} \\ =\text { correct difference } \end{gathered}$   $\frac{\text { difference }}{\text { amount }}(\times 100)$ $=0.02 \%$	M2 A1   M1   A1	M1 for a subtraction with 1 correct product   From M2 only   FT 'their values' provided at least M1 previously awarded   Needs to be correct to 2 d.p. on FT
7(a) Frequency density	B1	
7(b) 'No' OR 'You cannot tell' AND e.g.   'The heaviest player could have been 140 kg and the lightest player could have been 70 kg , but we cannot tell',   'It doesn't give you the mass of any player',   'You cannot tell exact weights because it is grouped data'   OR No AND e.g.   'The lightest and heaviest players could not be 70kg and 140 kg because of how groups are written'	E1	Do not accept reasons e.g.   'Because it is grouped data' without further explanation about how the data could be distributed in the groups, or 'The graph is not accurate enough'
$\begin{aligned} 7 \text { (c) } \begin{aligned} 10 \times 0.8+10 \times 1.1 & +20 \times 0.1 \\ = & 21 \end{aligned}, ~ \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A2 } \end{aligned}$	Allow for $\mathrm{x} \times 0.8+10 \times 1.1+20 \times 0.1$, where $6 \leq \mathrm{x}<10$   May be seen on the diagram   CAO   A1 for 17.8 , possibly rounded to 17 or 18   If no marks,   SC1 for sight of $10 \times 1.1+20 \times 0.1$, or $11+2$, or 13   May be seen on the diagram

\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
7(d) (Mid-points) 80, 95, 105, 115, 130 \\
(Frequencies of) 8, 5, 8, 11, 2
\end{tabular} \& \[
\begin{aligned}
\& \hline \text { B1 } \\
\& \text { B1 }
\end{aligned}
\] \& May be seen on the graph May be seen on the graph or in (c) FT 'their 8, 11, 2' from (c) \\
\hline \[
\begin{array}{r}
80 \times 8+95 \times 5+105 \times 8+115 \times 11+130 \times 2 \\
\left(640+475+840+1265+260 \begin{array}{l}
\text { or equivalent } \\
=3480)
\end{array}\right. \\
\div 34 \\
=102.3(529 \ldots) \text { or } 102.4
\end{array}
\] \& M1

m1

A1 \& | FT their frequencies (but not use of frequency densities $0.4,0.5,0.8,1.1$ and 0.1 ) |
| :--- |
| FT their mid-points provided they are within the groups (inclusive of the boundaries) |
| Allow FT for the sum of their frequencies |
| CAO |
| Allow an answer of 102 from correct working | <br>

\hline 8(a) (radius =) $15 \times 33 \div(22+33)$ or $15 \times 3 / 5(=9)$ or equivalent \& B2 \& Working MUST be shown here May be seen with appropriate tangent ratios If Pythagoras used, appropriate use of the scale factor would be needed Allow B1 for sight of $33 / 55$ or equivalent OR $55 / 33$ or equivalent <br>
\hline Sight of $1 / 3 \times \pi \times 15^{2} \times 55 \quad$ OR $\quad 1 / 3 \times \pi \times 9^{2} \times 33$ \& B1 \& (12952 to 12961 OR 2797.7 to 2800) <br>

\hline $$
\begin{array}{rl}
1 / 3 \times \pi \times 15^{2} \times 55-1 & 1 / 3 \times \pi \times 9^{2} \times 33 \\
& =4125 \pi-891 \pi\left(=3234 \pi\left(\mathrm{~cm}^{3}\right)\right)
\end{array}
$$ \& \[

$$
\begin{aligned}
& \text { M1 } \\
& \text { A1 }
\end{aligned}
$$
\] \& Accept values in the range 10154.7 to $10161.2\left(\mathrm{~cm}^{3}\right)$ <br>

\hline
\end{tabular}



9. Use of cosine rule followed by sine rule $\begin{aligned} & \text { Distance of Alpha from Aberwyn } \\ & \begin{array}{c} \text { distance }=) \sqrt{5.5^{2}+2.4^{2}-2 \times 5.5 \times 2.4 \times \cos 76\left(^{\circ}\right)} \\ \text { or }(\text { dist }=) \sqrt{ } 29.623 \ldots \\ \\ (\text { distance }=) 5.4(427 \ldots)(\mathrm{km}) \end{array} \end{aligned}$   Distance of Beta from Aberwyn $($ distance $=) \frac{5.4(427 \ldots)}{\sin 118\left({ }^{\circ}\right)} \times \sin 32\left({ }^{\circ}\right)$ $=3.2(4 \ldots) \text { to } 3.3(\mathrm{~km})$	S1 M2 A1 M2 A1	M1 for (distance ${ }^{2}=5.5^{2}+2.4^{2}-2 \times 5.5 \times 2.4 \times \cos 76\left({ }^{\circ}\right)$ or ( dist $^{2}=$ ) 29.623...   CAO   FT 'their derived 5.4(427...)'   M1 for $\frac{\text { distance }}{\sin 32\left({ }^{\circ}\right)}=\frac{5.4(427 \ldots)}{\sin 118\left({ }^{\circ}\right)}$   FT from M2 for their sine rule only
$\begin{aligned} & 10 \text { (a) } \begin{aligned} & 0.035 \times(250000-180000) \\ &+0.05 \times(255000-250000) \\ &(=2450+250=2700) \end{aligned} \end{aligned}$	B2	B1 for $0.035 \times(250000-180000)(=2450) \quad O R$ B1 for $0.05 \times(255000-250000) \quad(=250)$


$\begin{aligned} & \text { 10(b) Sight of } 0.05 \times\left(x-250 \begin{array}{l} 000) \\ =0.05 x-12500 \\ x+2450+0.05 x-12500=327000 \text { or equivalent } \\ 1.05 x-10050=327000 \text { OR } 1.05 x=337050 \\ x=(£) 321000 \end{array}\right. \end{aligned}$	B1   B1   M1   m1   A1	May be embedded in their equation   May be embedded in their equation   No further marks unless an appropriate equation seen   FT 'their 0.035(250 000-180 000)' AND   'their $0.05 \times 250000$ '   CAO   If no marks awarded, award   SC2 for $\mathrm{x}=(£) 321000$   If B1 only previously awarded, replace with   SC2 for $\mathrm{x}=(£) 321000$   Note: If a candidate uses x as being the amount over $£ 250000$, then award B0B0 followed by   M1 for $1.05 x+180000+(1.035 \times 70000)=327000$ or equivalent   A1 for $x=(£) 71000$   A1 for (£) 321000
	B1   B1   M1   m1   A1	May be embedded in their equation   May be embedded in their equation   No further marks unless an appropriate equation seen   FT 'their 2700' AND 'their $0.05 \times 255000$ '   CAO   If no marks awarded, award   SC2 for $x=(£) 321000$   If B1 only previously awarded, replace with   SC2 for $x=(£) 321000$   Note: If a candidate uses $x$ as being the amount over   $£ 255000$, then award BOBO followed by   M1 for $1.05 x+180000+75000+2700=327000$   A1 for $x=(£) 66000$   A1 for (£) 321000

