GCSE MARKING SCHEME

SUMMER 2019

GCSE
MATHEMATICS - NUMERACY UNIT 1 - INTERMEDIATE TIER 3310U30-1

INTRODUCTION

This marking scheme was used by WJEC for the 2019 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

WJEC GCSE MATHEMATICS - NUMERACY (3310U30-1)

SUMMER 2019 MARK SCHEME

GCSE Mathematics-Numeracy Unit 1: Intermediate Tier	Mark	Comments
1.		Penalise -1 only on their first possible A1 for incorrect units. Ignore units not given
$(1 / 4 \mathrm{~kg}$ strawberries costs) (£) 2.15	B1	
(Mr Thomas pays) 20-2.55	M1	(=£17.45)
(Cost of strawberries from £20) $20-8.60 \div 4$		(= $20-2.15=£ 17.85$)
(Cost of $11 / 2 \mathrm{~kg}$ raspberries) $20-2.55-8.60 \div 4$	m1	($=£ 17.45-£ 2.15$ or £17.85-2.55)
(=£) 15.3(0)	A1	Sight of (£)15.3(0) implies all previous marks FT 'their $8.60 \div 4$ '
(Cost of 1 kg raspberries) $15.3(0) \div 3 \times 2 \text { or } 15.3(0) \div 1.5$	M1	FT 'their 15.3(0)'
(=£) 10.2(0)	A1	
Organisation and communication	OC1	Consider implication of units not given in W mark For OC1, candidates will be expected to:
		- present their response in a structured way - explain to the reader what they are doing at each step of their response - lay out their explanations and working in a way that is clear and logical - write a conclusion that draws together their results and explains what their answer means
Writing	W1	For W 1 , candidates will be expected to: - show all their working - make few, if any, errors in spelling, punctuation and grammar - use correct mathematical form in their working - use appropriate terminology, units, etc.

2(a)(i) $\frac{3}{8}$	B1	
2(a)(ii) 1:1	B1	
2(b) Selects or unambiguously implies 'Shorter than Dieter's sunflower' AND - states or uses a suitable conversion, e.g. ' 90 cm is 36 inches' (as given), or ' 1 inch is $2.5(4) \mathrm{cm}$ ', or equivalent OR - shows a calculation based on an appropriate conversion, e.g. sight of $90 / 36$, or $10 \div 4$, or similar Stating or giving any of the following - 80 cm as 30 inches to 32 inches inclusive - 24 inches as 60 cm to 62 cm inclusive	E1	Equivalents include: - 12 inches as 30 cm - 6 inches as 15 cm - 9 cm as 3.6 inches - 10 cm as 4 inches B1 implies previous E1 provided 'Shorter than Dieter's sunflower' selected

3(a)(i) (Aled's mum paid) (£) 220 OR (Aled and Gareth pay a total of $660-220)(£) 440$ $\begin{gathered} (660-220) \div(1+9) \text { or } 9 \times(660-220) \div(1+9) \\ \text { or } 94 \times 44 \\ \text { or } 9 \times 44 \\ \\ \\ \\ \\ \\ \\ \text { (Gled paid }) \\ \text { (Gareth paid) } \\ (£) 396 \end{gathered}$	B1 M1 A1 A1	FT 660 - 'their derived 220' FT $9 \times$ 'their 44' FT 440 - 'their 44' provided M1 awarded (this allows If answers 44 and 396 are reversed, M1, A0, A1 to be awarded) If $\mathrm{MO}, \mathrm{A} 0, \mathrm{~A} 0$ award SC 1 for any of the following - answers that add to 'their 440 ' - answers (£)66 and (£)594 - answers (£)22 and (£)198
3(a)(ii) Explanation, e.g. $220+44+396(=660)$, 'add them all up', 'check to see if the total is $(£) 660$ ', 'divide Gareth's amount by 9 '	E1	Depends on at least 1 mark awarded in 3(a)(i) Mark as appropriate to candidate's method in 3(a)(i), e.g. accept alternative method using $£ 44$ or $£ 396$ (if originally found from subtraction, sight of appropriate multiplication or division, or vice versa) If values are used, FT provided the 3 values total (£)660 If a total is given in a response it must be correct, (£)660 Allow, e.g. 'multiply Aled's mother's amount by 3 ',
3(b) Sight any of any one of the following: - $\quad(21.13 \mathrm{~kg}-20 \mathrm{~kg}=) \quad 1130(\mathrm{~g})$ - $21130(\mathrm{~g})$ - consistent conversion of units g to kg , keeping 21.13 kg and 20 kg unchanged Coat AND Jumper $(820+320)$	B1	Allow 1.13 (kg) provided it is interpreted correctly Accept evidence in working, do not award if working is not seen If units are given they must be correct Do not award B2 unless either previous B1 awarded or appropriate correct working shown Do not award B2 if incorrect working or no working seen B1 for any of the following: - $1130-820=310$ - Coat with sight of $310(\mathrm{~g})$ left - Unambiguous choice of $820(\mathrm{~g})$ AND $320(\mathrm{~g})$ to remove - 'coat and jumper' without working shown, not to be awarded if incorrect working seen Note: B1, B2 for unambiguous choice of Coat AND Jumper with for sight of $21130-820-320=19990$ or $820+320=1140$ OR B1, B1 for sight of $21130-820-320=19990$

$\begin{aligned} & \text { 3(c)(i) Appropriate calculation, e.g. } \\ & 9 \times 11.4(0), \\ & 34.2(0)+68.4(0), \\ & 3 \times 34.2(0), \\ & 45.6(0)+57(.00), \\ & (45.6+5.7) \times 2, \\ & \\ & \\ & \\ & \\ & \\ & \end{aligned}$	M1 A1	Calculation that could lead to the correct answer if evaluated correctly
$\begin{aligned} & \text { 3(c)(ii) Appropriate calculation, e.g. } \\ & 11.4(0) \div 2+22.8(0) \text {, } \\ & 57(.00) \div 2, \\ & (34.20+22.80) \div 2 \\ & \quad 28.5(0) \text { (euros) } \end{aligned}$	M1 A1	Calculation that could lead to the correct answer if evaluated correctly
3(d)(i) Correctly completed frequency diagram	B1	Bars of correct height (16 and 33) for the missing intervals
3(d)(ii) $\quad 1.12 \leq b<1.16$	B1	
4(a) 24 (miles per gallon)	B1	
4(b) 2.2 (litres)	B1	
$\begin{aligned} & \text { 4(c)(i) Sight of } \\ & \text { 55, 57, 53, 17, } 48 \\ & \text { (55+57+53+17+48) } 5 \\ & \quad(230 \div 5=46 \text { (miles per gallon) } \end{aligned}$	B1 M1 A1	FT 'method to sum 5 numbers' provided at least 3 are correct FT provided at least 4 correct values are used FT responses must be evaluated not left as improper fractions, however allow rounded or truncated final answers
4(c)(ii) Explanation of why it is not a suitable average, e.g. 'included the rogue value', 'gives a lower value', '17 appears to be an anomaly', 'one car goes far less than the others', 'because there is one really low value', 'mean is unduly affected by use of 17 '	E1	Allow, e.g. 'only considered 5 cars', 'not enough cars', 'because there are fewer cars', 'insufficient data', 'not considered all the cars with engines less than 1.5 litres', 'not considered all 6 (or 7) cars'
4(d) Straight line of best fit, following the trend with some points above and some below the line	B1	Allow slight adjustment down, considering the rogue value, the trend must be correct The line of best fit, shown or if extended, must not be connected to any corners of the graph paper Allow intention of a straight line

4(e) Unambiguous decision with a reason, e.g. 'Yes, as more cars with engines less than 2.5 litres', 'Yes, many cars with engine size less than 2.5 litres' 'Yes, 15 or 16 cars shown <2.5 litres', 'Yes, as only 10 cars (out of 26) with ≥ 2.5 litre engine', 'Yes, more data', "Yes, more readings' 'Yes, stronger correlation', 'Yes, (more) points are closer to the line of best fit', 'Yes, more cars', 'Don't know (or No), as there is one rogue value for a car with engine size <2.5 litres', 'No, data not a large set',	E1	Allow, e.g. 'Yes, they are closer together', 'Yes, plots before 2.5 are close together' Yes, results are quite similar' 'Yes, they have a similar range in fuel economy', 'Yes, as only 10 cars (out of 26) with >2.5 litre engine' Do not accept, e.g. 'Yes, because before there is a lot of fuel economy', Do not accept contradiction between the choice of yes, no and don't know and their reason	
$\begin{aligned} \text { 5(a) (Area) } 1 / 2 \times 8 \times(10+12) \\ \text { or } 10 \times 8+1 / 2 \times 8 \times(12-10) \\ 88\left(\mathrm{~cm}^{2}\right) \end{aligned}$	M1 A1		
$\begin{array}{ll}\text { (Cost) } 5 \times 1.5(0) \\ \\ & (£) 7.5(0)\end{array}$	M1 A1	Strict FT for 'their derived area' used with the table of charges A 'derived area' is a value obtained form any calculation which a candidate considers as 'their area' FT for 'their derived area' used to select the charge	
		$\begin{aligned} & \text { Area of label, to the } \\ & \text { nearest } \mathrm{cm}^{2} \end{aligned}$	Cost to print 500 labels
		Up to $80 \mathrm{~cm}^{2}$	(£) 5.75
		$81 \mathrm{~cm}^{2}$ to $85 \mathrm{~cm}^{2}$	(£) 6.25
		$86 \mathrm{~cm}^{2}$ to $89 \mathrm{~cm}^{2}$	(£) 7.5(0)
		$90 \mathrm{~cm}^{2}$ or more	(£) 8.75
5(b)(i) $\quad 375\left(\mathrm{~cm}^{2}\right)$	B1		

5(b)(ii) (Value sum dimensions) 40+25+30 (S = 95)	B1		
(Value area largest face) $30 \times 40 \quad(F=1200)$	B1		
For sight of any 1 of the following: - (Sum of values $S+F=$) 1295 - $1 / 5 \times(95+1200) \times 0()$. - $1 / 5 \times 95 \times 0()$. - $1 / 5 \times 1200 \times 0()$. Any correct substitution into the given formula, e.g. (Cost) $\quad 1 / 5 \times(95+1200) \times 0.02 \quad(=259 \times 0.02)$ or $1 / 5 \times 95 \times 0.02+1 / 5 \times 1200 \times 0.02 \quad(=0.38+4.8(0))$ $\text { (=) }(£ .18$	B1	Not a FT mark	
	M1	FT 'their derived S' + 'their derived F' ('derived' meaning not taken from the diagram) Allow intention of brackets, provided not contradicted For a single calculation or may be seen in stages	
	A1	Examples of possible FT answers:	
		Sum of values	Cost in $£$
		680	2.72
		740	2.96
		755	3.02
		820	3.28
		1080	4.32
		1095	4.38
		1160	4.64
		1280	5.12
		1360	5.44

6(a) Correct position indicated	B3	Allow $\pm 2 \mathrm{~mm}$ and $\pm 2^{\circ}$ throughout Irrespective of any indication of construction correct or otherwise If not indicated, allow for the correct and unambiguous intersection of the perpendicular bisector and the arc If not B3, award: B1 for an arc of radius 4 cm in the correct position AND B1 for perpendicular bisector between Block 1 and Block 2 drawn (accept bisector indicated as a short vertical indication at the midpoint between Block 1 and Block 2)
6(b) Answer in the range 102 to 110 (metres)	B1	
$\begin{array}{ll} \hline 7 \text { (a) }(\text { Cost to Sam) } 200 \times 25 & (=£ 5000) \\ \text { (Number of trees Sam expects to sell is) } \\ 200-0.22 \times 200 \text { or } 200 \times 0.78 \\ \quad(=) 156 \text { (trees) } \end{array}$ (Money from sales of trees is $40 \times 156=£$) 6240 (Expected profit is $£ 6240-£ 5000=$) (£) 1240	M1 M1 A1 B1 B1	Depends only on previous M1 FT the number of trees sold, i.e. $40 \times$ 'their 156 ' FT 'their (40× 'their 156 ')' - 5000 correctly evaluated
7(a) Alternative method: (Number of trees Sam expects to sell is) $200-0.22 \times 200 \text { or } 200 \times 0.78$ $\text { (}=\text {) } 156 \text { (trees) }$ (Expected profit) $156 \times(40-25)$ -25 (£) 1240	M1 A1 M2 A1	FT 'their 156' M1 for $156 \times(40-25)-$..... or CAO $\quad \ldots .-(200-156) \times 25)$
7(b) A suitable diagram with at least 3 hexagons (or 2 extra hexagons) shown to tessellate OR Sight of $3 \times 120^{\circ}=360^{\circ}$ or equivalent	E1	ISW A suitable diagram will involve 3 hexagons meeting at a point shown at least once, the 6 sides of the hexagons must be shown Allow if a correct diagram given with angles unlabelled or incorrectly labelled Do not accept if only the exterior angles (labelled correctly or incorrectly) of the given hexagon show, need to show further hexagons

8(a)(i) $045\left(^{\circ}\right.$) $\pm 2^{\circ}$	B1	Ignore any additional direction included, such as N (orth) E (ast) (or an incorrect direction) B0 for $45^{\circ} \pm 2^{\circ}$ and/or N (orth) E (ast)
8(a)(ii) $202\left(^{\circ}\right.$) $\pm 2^{\circ}$	B1	
8(b)(i) Sight of (Milford Haven to Ruabon) $90 \times 11 / 3$ OR (Ruabon to Swansea) $80 \times 1 \frac{11 / 4}{}$ (Milford Haven to Ruabon) 120 (miles) AND (Ruabon to Swansea) 100 (miles) (Total distance) 220 (miles)	M1	For the appropriate idea of speed \times time. Allow sight of - 90×80 (minutes) - 80×75 (minutes) - $\quad 90 \times 1.3(3)$ - $90 \times 1.2(0)$ - 80×1.15 CAO A1 for $90+30$ or $80+20$ or equivalent only provided there is no evidence of any misconception, e.g. $(80+35)$ FT provided at least M1, A1 previously awarded
8(b)(ii) (Total time is) 155 (minutes), or for sight of 80 (minutes) and 75 (minutes) (Total fuel needed would be) $\begin{gathered} 155 \times 0.4 \times 4.55, \text { or } \\ 80 \times 0.4 \times 4.55+75 \times 0.4 \times 4.55 \end{gathered}$ 282(.1) (litres)	B1	FT 'their number of minutes' provided both parts of the journey are considered and both parts take >60 minutes Use of ' $\div 2.5$ ' is equivalent to ' $\times 0.4$ ' (referred to as ' a product' in the details for M1 and A1) M1 for sight of - product of any two of $155,0.4$ and 4.55 seen, OR - product of any two of $80,0.4$ and 4.55 seen AND product of any two of $75,0.4$ and 4.55 seen AND intention to sum these two products CAO, accept 280 (litres) only if $282(.1)$ seen A1 for sight of any one of the following, provided at least M1 previously awarded: - 0.4×705.25 - 0.4×364 - 0.4×341.25 - 4.55×32 - 4.55×30 - 4.55×62 - 1.82×155 - 1.82×80 - 1.82×75 OR A1 for one of the two stages of evaluating products calculated accurately

9(a)(i) 2.5×10^{7}	B1	
9(a)(ii) $9600 \mathrm{~m}^{3}$	B1	
9(b) (Volume seen or implied) $59700000\left(\mathrm{~m}^{3}\right)$ or $60000000\left(\mathrm{~m}^{3}\right)$ OR (Surface area seen or implied, used as) 4.5(4) or 5 Average depth calculation, e.g. - $59700000 \div 4540000$ - $60000000 \div 4500000$ - $6000 \div 450$ - $600 \div 45$ - $60000000 \div 5000000$ - $60 \div 5$ OR sight of a trial and improvement method with suitable correct calculation(s): - $4.54 \times 12=54.48$ and $4.54 \times 13=59.02$ - $4.54 \times 13=59.02$ and $4.54 \times 14=63.56$ - single calculation (not $\times 13$) between $4.54 \times 12.1=54.934$ and $4.54 \times 13.1=59.474$ - $4.5 \times 12=54$ and $4.5 \times 13=58.5$ - $4.5 \times 13=58.5$ and $4.5 \times 14=63$ - single calculation between $4.5 \times 13.1=58.95$ and $4.5 \times 13.4=60.3$ - $5 \times 12=60$ Answer in the range $12(\mathrm{~m})$ to $13.5(\mathrm{~m})$	B1	Accept using index notation or standard form, e.g. $59.7 \times 10^{6}, 5.97 \times 10^{7}, 60 \times 10^{6}, 6 \times 10^{7}$ Accept exact or correctly rounded volume written in m^{3}, i.e. do not accept, e.g. 59000000 Ignore any units given FT e.g. 'their volume' $\div 4540000$ Accept written as a fraction Accept exact or rounded values provided estimates are reasonable Watch for compensating errors, which is MO and AO
10(a)(i) Maesystrad AND 46 (minutes)	B1	
10(a)(ii) Rhewlteg AND gives decision used unambiguously as median	B1	Accept decision based on median without the use of the term 'median', e.g. 'half of them took more than 39 minutes' Allow, e.g. - Rhewlteg as median is 38 (minutes) (from misreading the scale correct median is 39 minutes) - Rhewlteg as average is 39 (minutes) Do not accept contradictions, decision needs to be solely based on the median
10(a)(iii) Rhewlteg AND 25 (minutes)	B1	

10(a)(iv) 'Don't know' indicated or unambiguously implied AND reason, e.g. 'not told', 'it doesn't say (on the diagam)', 'doesn't give you the number of students/pupils', 'doesn't tell you how many were asked', 'it is about travel times (not number of students)', 'only gives the timings', 'it shows distribution of travel times, not number of students', 'only shows proportions of the students'	E1	Allow, e.g. 'doesn't give you the frequency (of students)', Do not accept, e.g. 'can't tell', 'not enough data', 'shows only median, range and measures of spread'
10(b)(i) 120 (students)	B1	
10(b)(ii) 23 (minutes)	B1	
11(a) Austria	B1	
11(b) United Kingdom	B1	
11(c) Argentina with appropriate working, e.g. Sight of 13 to 16 (for Argentina) AND 3 to 4 (for Canada)	B2	Accept unlabelled population density, provided not ambiguous or from incorrect working B1 for approximate population $/ \mathrm{km}^{2}$ (for Argentina) 13 to 16 OR (for Canada) 3 to 4 BO for unsupported answer 'Argentina' or if inappropriate working given, e.g. - 4×10000000 - 'Canada 34000 000, Argentina 40000 000'

