## GCSE MARKING SCHEME

AUTUMN 2018

GCSE<br>MATHEMATICS<br>UNIT 2 - INTERMEDIATE TIER 3300U40-1

## INTRODUCTION

This marking scheme was used by WJEC for the 2018 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

## WJEC GCSE MATHEMATICS (3300U40-1)

## AUTUMN 2018 MARK SCHEME

| GCSE Mathematics Unit 2: Intermediate Tier | Mark | Comments |
| :---: | :---: | :---: |
| 1.(a) 71 | B2 | B1 for sight of $70 \cdot 8(\ldots$.$) OR sight of 70$ OR sight of $71 \cdot 0 \ldots$ <br> Mark final answer. |
| 1.(b) $\begin{gathered}0.57 \times 83.5 \text { or equivalent. } \\ 47.6\end{gathered}$ | $\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{~A} 2 \end{aligned}$ | A1 for sight of $47 \cdot 5(\ldots)$ or sight of $47 \cdot 60$. A1 for 47.6\%. <br> Mark final answer. |
| 2. | B3 | For all 5 correct B2 for 4 correct. <br> B1 for 3 correct |
| 3. <br> Correct pie chart showing two sectors with angles $120^{\circ}$ and $240^{\circ}$ <br> Correct labelling. | B3 | Allow $\pm 2^{\circ}$. $\begin{array}{ll} \frac{\text { If B3 not gained. }}{\frac{8}{2} \times 360 \quad \text { OR }} \frac{16}{24} \times 360 & \text { M1 } \\ =120\left(^{\circ}\right) \text { OR } \quad=240\left(^{\circ}\right) & \\ \text { Correct drawing of 'their angle' F.T. } & \text { A1 } \\ \begin{array}{l} \text { (Possible M1A0A1 for incorrect calculation } \end{array} \\ \text { OR possible M1A1A0 for incorrect drawing) } \end{array}$ <br> For any diagram showing just two sectors with the largest sector labelled 'awake' and smallest sector labelled 'asleep'. <br> Allow equivalent unambiguous labels or key BUT NOT just $120\left({ }^{\circ}\right)$ and $240\left({ }^{\circ}\right)$ or just $8(\mathrm{hr})$ and $16(\mathrm{hr})$ |
| 4. | M1 <br> m1 <br> A2 | For an appropriate $2^{\text {nd }}$ step. <br> A1 for each correct value (C.A.O.). Dependent on both M1 and m1. |
| If no number ' $n$ ' chosen. <br> - $1 / 5$ of $25 \%=5 \% \quad$ AND $1 / 4$ of $20 \%=5 \%$ with no further incorrect work <br> - $1 / 5$ of $25 \%=5$ AND $1 / 4$ of $20 \%=5$ <br> - $1 / 5$ of $25 \%=5 \% \quad \begin{aligned} & \text { OR } 1 / 4 \text { of } 20 \%=5 \% \\ & \text { ISW }\end{aligned}$ |  | Award <br> SC4 <br> SC2 <br> SC1 <br> No marks for showing just one of the following. $1 / 5 \text { of } 25 \%=5 \quad \text { OR } \quad 1 / 4 \text { of } 20 \%=5$ |

\begin{tabular}{|c|c|c|}
\hline \[
\begin{aligned}
\& 5 . \quad\left(\mathrm{ABC} \text { or } \mathrm{BAC}=\frac{180-76}{2}\right. \\
\& =52\left(^{\circ}\right) \\
\& (\mathrm{CBP}=180-52=) \text { or }(\mathrm{CBP}=76+52=) \quad 128\left(^{\circ}\right)
\end{aligned}
\] \& \begin{tabular}{l}
M1 \\
A1 \\
B1
\end{tabular} \& \begin{tabular}{l}
Angles may be shown on the diagram. \\
F.T. 'their derived, stated or shown 52' BUT not 76 .
\end{tabular} \\
\hline \begin{tabular}{l}
Organisation and Communication. \\
Accuracy of writing.
\end{tabular} \& OC1

W1 \& | For OC1, candidates will be expected to: |
| :--- |
| - present their response in a structured way |
| - explain to the reader what they are doing at each step of their response |
| - lay out their explanation and working in a way that is clear and logical |
| For W 1 , candidates will be expected to: |
| - show all their working |
| - make few, if any, errors in spelling, punctuation and grammar |
| - use correct mathematical form in their working |
| - use appropriate terminology, units, etc | <br>

\hline 6.(a) $\quad(\mathrm{m}=) \quad 9.6$ \& B1 \& | Mark final answer. |
| :--- |
| Allow embedded answer. |
| B1 for $9 \cdot 6 / 2$ or $9 \cdot 6 / 2=4.8$ with no further work. |
| B0 for $9 \cdot 6 / 2$ followed by ' $m \neq 9 \cdot 6$ '. | <br>

\hline 6.(b)(i) 3 (2x-5) \& B1 \& Allow $3 \times(2 x-5)$ <br>
\hline 6.(b)(ii) $\quad \mathrm{y}(\mathrm{y}+4)$ \& B1 \& Allow $\mathrm{y} \times(\mathrm{y}+4)$ <br>
\hline 6.(c)(i) -2 \& B1 \& B0 for -2n. Mark final answer. <br>
\hline 6.(c)(ii) Example given, e.g. $3 \times 25-20=55$ \& B1 \& Candidates must show a calculation or link a term with its correct value e.g. ' $25^{\text {th }}$ term is 55 '. If they list the terms, then the list must be accurate and start at $-2\left(6^{\text {th }}\right.$ term) or one of the previous terms. <br>

\hline | 7. All possible numbers shown with no extras. (11,12,13,14,21,22,23,24,31,32,33,34,41,42,43,44) OR |
| :--- |
| Clearly justifies that there are 16 possible numbers from $4 \times 4=16$ |
| (Probability multiple of $7=$ ) $\frac{3}{16}$ or equivalent. ISW 16 | \& B2 \& | B1 for at least 10 correct and no more than 4 'extras'. |
| :--- |
| $10+1,10+2$, etc and not added gain no credit. |
| F.T. 'their list' only if at least 6 numbers given which includes at least one multiple of seven. |
| OR |
| B1 for $x / 16$ with $x<16$. |
| B1 for $3 / y$ with $y>3$. |
| Penalise, -1 , any incorrect notation e.g. ' 3 out of 16'. Unsupported $3 / 16$ gains BOB2. | <br>

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline 8.(a) ( 1 mile $=$ ) $8 / 5(\mathrm{~km})$ or $1600(\mathrm{~m})$ or equivalent
$$
\begin{array}{r}
(\text { Difference }=) \frac{8}{5} \times 1000-1.5 \times 1000 \\
100 \text { (metres) }
\end{array}
$$ \& B1
M1

A1 \& | For sight of a correct conversion e.g. 5 miles $=8 \mathrm{~km}, 1 \mathrm{~km}=5 / 8$ mile. |
| :--- |
| Allow more accurate correct approximations (for all marks) only if in the range [1609(m) to $1610(\mathrm{~m})$ ] |
| No FT from an incorrect conversion. |
| Allow M1 for $\frac{8}{5}-1 \cdot 5(=0 \cdot 1)$ or equivalent. |
| Allow -100 (metres). |
| If no marks gained then |
| allow SC1 for sight of $(1.5 \times 5 / 8)$ | <br>

\hline 8.(b) $\begin{aligned} & 4 \times 100^{2} \\ & \\ &=40000\end{aligned}$ \& M1 \& | Also for alternative correct methods e.g. |
| :--- |
| (A $4 \times 1$ rectangle followed by) a $400 \times 100$ calculation, $200 \times 200$, etc. | <br>


\hline 9. | (Area of square $=$ ) $40 \cdot 96\left(\mathrm{~cm}^{2}\right)$ |
| :---: |
| (Perp. height of triangle $=)$ |

(Area of triangle $=) \frac{6.4 \times 4 \cdot 3}{2}$

(Area of $A B C D E=40 \cdot 96+13 \cdot 76=) 54.72\left(\mathrm{~cm}^{2}\right)$ \& \[
$$
\begin{aligned}
& \text { B1 } \\
& \text { B1 } \\
& \text { M1 } \\
& \text { M1 } \\
& \text { A1 } \\
& \text { B1 }
\end{aligned}
$$

\] \& | May be seen on the diagram. |
| :--- |
| Do not accept 4.3 as a 'slant height' unless used correctly for M1. |
| F.T. 'their unambiguously stated 4•3'. (Not 10•7). |
| F.T. from two derived or stated areas. Allow 54.7 only if 54.72 seen. Otherwise penalise pre-approximation -1 once only. | <br>

\hline 10.(a) $\quad \times 0.88^{3}$ \& B1 \& <br>

\hline $$
\begin{gathered}
\text { 10(b) } \frac{45 \cdot 9-42.5}{42.5}(=0.08) \text { OR } \frac{45 \cdot 9}{42.5}(=1.08) \\
0.08 \times 100 \\
\text { OR } \quad(1.08 \times 100)-100 \\
8(\%)
\end{gathered}
$$ \& M1

m1

A1 \& | May be seen in parts. |
| :--- |
| C.A.O. |
| If no marks awarded allow SC1 for -8(\%). | <br>

\hline | 11. |
| :--- |
| $\varepsilon$ | \& B2 \& | Correct groupings of all 7 numbers within and outside the two circles (with or without a rectangle). |
| :--- |
| B1 for 5 or 6 correctly placed numbers. |
| No credit for a number shown in more than one section. |
| Penalise -1 , once only, if a number not in the universal set is noted. |
| Ignore labelling for this B2 or B1. |
| (i.e. ignore missing, conflicting or incorrect labels.) |
| Allow intent of drawing circles and a rectangle. Two intersecting circles correctly labelled $A$ and $B$ OR 'even numbers' and 'multiples of 3' (but not conflicting labels or labels that conflict number placements) within a rectangle. |
| Allow missing ' $\varepsilon$ ' symbol. | <br>

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline 12.(a) 11 \& B2 \& \begin{tabular}{l}
B1 for each. \\
Table takes precedence if conflicting values given.
\end{tabular} \\
\hline \begin{tabular}{l}
12.(b) At least 6 correct plots and no incorrect plot. \\
A smooth curve drawn through their plots.
\end{tabular} \& P1 \& \begin{tabular}{l}
F.T. 'their \((-2,-5)\) ' and 'their \((2,11)\) ' \\
OR \((-2,-5)\) and \((2,11)\) plotted. \\
Allow \(\pm 1 / 2\) a small square'. \\
Ignore any plots that can not be shown e.g. \((-2,-13)\). \\
F.T. 'their plots'. \\
OR a curve through the 6 given points and ( \(-2,-5\) ) and \((2,11)\). \\
Allow intention to pass through their plots. \\
( \(\pm 1\) small square horizontal or vertical.)
\end{tabular} \\
\hline 12.(c) Line \(\mathrm{y}=2\) drawn \(\quad \begin{array}{llll} \& \text {-4.65 } \& \text { AND } \& 0.65\end{array}\) \& L1
B1 \& \begin{tabular}{l}
Must be at least 2 cm long. \\
F.T. intersection of 'their curve' with 'their \(y=2\) ' only if exactly two points of intersection. \\
Allow \(\pm\) ' 1 small square'.
\end{tabular} \\
\hline 13.70 \& B3 \& \begin{tabular}{l}
B2 for 77 OR 80 \\
B1 for any number between 65 and 79 inclusive, apart from 70(B3) and 77(B2) \\
B1 for 56, 60 OR 63
\end{tabular} \\
\hline \begin{tabular}{l}
14. \\
One correct evaluation \(5 \leq x \leq 6\) 2 correct evaluations \(5 \cdot 55 \leq x \leq 5 \cdot 75\), one <107, one > 107. 2 correct evaluations \(5 \cdot 65 \leq x \leq 5 \cdot 75\), one \(<107\), one \(>107\).
\[
x=5 \cdot 7
\]
\end{tabular} \& B1
B1
M1

A1 \& Correct evaluation regarded as enough to identify if 'too high' or 'too low'. If evaluations not seen accept 'too high' or 'too low'. <br>

\hline $$
\text { 15.(a) } \quad \frac{1}{2}
$$ \& B1 \& <br>

\hline 15.(b) -3 \& B1 \& <br>
\hline 15.(c) (5, 2) \& B1 \& <br>

\hline $$
\begin{aligned}
& \text { 16. } \begin{array}{l}
\text { (Length of side }=\frac{76 \cdot 4}{4}=\text { ) } \\
19 \cdot 1(\mathrm{~m})
\end{array} \\
& \text { (diagonal } \left.^{2}=\right) 19 \cdot 1^{2}+19 \cdot 1^{2} \\
& \text { diagonal }^{2}=729 \cdot 6(2) \text { or (diagonal }=\text { ) } \sqrt{ } 729 \cdot 6(2) \\
& (\text { diagonal }=) 27 \cdot 0(. .)(\mathrm{m}) \text { or } 27(\mathrm{~m})
\end{aligned}
$$ \& B1

M1
A1

A1 \& | F.T. 'their derived length of side' (not 76•4) Diagonal $=729 \cdot 6(2)$ is A0 unless corrected in further work |
| :--- |
| F.T. 'their 729.6' provided M1 awarded and their answer is greater than 19-1. |
| Award SC2 for a final answer of $108(\cdot 0 \ldots)(\mathrm{m})$ (from using $76.4(\mathrm{~m})$ as side length) BUT In this case there is no credit given for sight of 19.1. | <br>

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
17.(a) 0.92 written on the 'Not a Saturday' branch. \\
Sight of \(1-0.15-0.45\) OR 0.4 or 0.40 \\
\(0.4(0)\) on both 'car' branches AND \\
0.15 AND 0.45 correctly shown on lower branches.
\end{tabular} \& \[
\begin{aligned}
\& \mathrm{B} 1 \\
\& \mathrm{~B} 1 \\
\& \mathrm{~B} 1
\end{aligned}
\] \& Allow this B1 if shown on working lines. \\
\hline \begin{tabular}{l}
17.(b) \\
Sight of \(0.08 \times 0.15\) OR \(0.08 \times 0.4\) or equivalent.
\[
\begin{aligned}
(\mathrm{P}(\text { Sat and 'plane or car') } \& =) 0.08 \times 0.15+0.08 \times 0.4 \\
\& \text { or equivalent } \\
\& =0.044 \text { or equivalent. ISW }
\end{aligned}
\]
\end{tabular} \& \begin{tabular}{l}
B1 \\
M1 \\
A1
\end{tabular} \& \begin{tabular}{l}
FT 'their \(\mathrm{P}(\mathrm{car})\) ' if \(<1\). \\
\(0.08 \times 0.55\) implies previous B1.
\end{tabular} \\
\hline \[
\begin{aligned}
\left.\frac{\text { Alternative method }}{(P(\text { Sat and 'plane or car') }}=\right) 1-(0.92+0.08 \times 0.45) \\
\text { or equivalent }
\end{aligned}
\] \& M2

A1 \& ```
FT 'their 0.92'.
M1 for intent
P(Sat and 'plane or car') =
1 - P('not Saturday') - P('Saturday and train')

``` \\
\hline \[
\text { 18.(a) } \quad \begin{aligned}
& \operatorname{Tan} x=\frac{6 \cdot 4}{8 \cdot 2} \\
&(x=) \tan ^{-1} 0.78(0 . .) \text { or } \tan ^{-1} \frac{6.4}{8 \cdot 2} \\
&\left.=38\left({ }^{\circ}\right) \quad \text { OR } 37 \cdot 9(\ldots)^{\circ}\right)
\end{aligned}
\] & \begin{tabular}{l}
M1 \\
A1 \\
A1
\end{tabular} & Implies previous A1. \\
\hline \begin{tabular}{l}
Alternative method. \\
Correct use of 'two-step' method.
\[
(x)=38\left({ }^{\circ}\right)
\]
\end{tabular} & \[
\begin{aligned}
& \text { M2 } \\
& \text { A1 }
\end{aligned}
\] & A partial trigonometric method is MO. Accept an answer that rounds to 38( \({ }^{\circ}\) ) \\
\hline \[
\begin{aligned}
& \text { 18.(b) } \quad\left(\mathrm{PAQ}=90-38 \Rightarrow 52\left(^{\circ}\right)\right. \\
& \mathrm{AQ}=\frac{7.9}{\sin 52\left({ }^{\circ}\right)} \\
& (\mathrm{AQ})=10(\mathrm{~cm}) \text { OR } 10 \cdot 0(\ldots \mathrm{~cm})
\end{aligned}
\] & \begin{tabular}{l}
B1 \\
M2 \\
A1
\end{tabular} & \begin{tabular}{l}
FT \(90^{\circ}\) - 'their \(38^{\circ}\). May be seen on the diagram. FT 'their clearly defined PAQ' \\
BUT not if PAQ = 'their \(x\) '. \\
M 1 for \(\sin 52\left({ }^{\circ}\right)=\frac{7.9}{\mathrm{AQ}}\)
\end{tabular} \\
\hline \[
\begin{gathered}
\frac{\text { Alternative method. }}{P Q A}=38\left({ }^{\circ}\right) \quad A Q=\frac{7.9}{\cos 38\left({ }^{\circ}\right)} \\
(A Q)=10(\mathrm{~cm}) \text { OR } 10 \cdot 0(\ldots \mathrm{~cm})
\end{gathered}
\] & \begin{tabular}{l}
B1 \\
M2 \\
A1
\end{tabular} & \begin{tabular}{l}
FT 'their \(38^{\circ}\) '. May be seen on the diagram. FT 'their clearly defined PQA' \\
M1 for \(\cos 38\left({ }^{\circ}\right)=\frac{7.9}{\mathrm{AQ}}\)
\end{tabular} \\
\hline \begin{tabular}{l}
Alternative method.
\[
\left(P A Q=90-38 \Rightarrow 52\left({ }^{\circ}\right)\right.
\] \\
Correct use of 'two-step' method.
\[
(A Q)=10(\mathrm{~cm})
\]
\end{tabular} & \begin{tabular}{l}
B1 \\
M2 \\
A1
\end{tabular} & \begin{tabular}{l}
FT \(90^{\circ}-\) their \(38^{\circ}\). \\
A partial trigonometric method is MO. \\
FT 'their clearly defined PAQ' \\
\(B U T\) not if \(P A Q=\) 'their \(x\) '. \\
Accept an answer that rounds to \(10(\mathrm{~cm})\)
\end{tabular} \\
\hline
\end{tabular}```

