GCSE MARKING SCHEME

AUTUMN 2018

GCSE
MATHEMATICS - NUMERACY UNIT 2 - HIGHER TIER 3310U60-1

INTRODUCTION

This marking scheme was used by WJEC for the 2018 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

WJEC GCSE MATHEMATICS - NUMERACY (3310U60-1)

AUTUMN 2018 MARK SCHEME

GCSE Mathematics - Numeracy Unit 2: Higher Tier	Mark	Comment
1(a) Idea that 4000 cycles is 80% $95 \times 4000 \div 80$ or 95×50 or equivalent 4750 (cycles)	S1 M1 A1	Interpretation of link between 80\% and 4000 cycles, e.g. sight of any one of the following, provided not with incorrect idea of using 20% or ($95-80=$) 15% - $80 \%=4000$ (cycles) - $4000 \div(0)$. - 4000/(0.)80
1(b)(i) Midpoints 1500, 2500, 3500, 4500 $\begin{aligned} & 1500 \times 3+2500 \times 12+3500 \times 9+4500 \times 7 \\ & (=4500+30000+31500+31500 \\ & =97500) \end{aligned}$ $\div 31$ $3145(.16 . . c y c l e s)$ or 3145.2 (cycles)	B1 M1 m1 A1	FT 'their midpoints' provided each one lies within the appropriate group, including bounds throughout Use of lower bound gives 82000 Use of upper bounds gives 113000 Use of lower bounds gives 2645(.16...) Use of upper bounds gives 3645(.16...)
1(b)(ii) $3000 \leq b<4000$	B1	
$\text { 2(a)(i) } \frac{300}{2000} \times 60 \text { or } 300 \div(2000 \div 60)$ or $60 \div(2000 \div 300)$ or equivalent 9 (minutes)	M1 A1	May be seen in stages ISW Allow 9.1 (minutes) from premature approximation If no marks, awarded SC1 for an answer or sight of $3 / 20$ or 0.15 (ignore units)

2(a)(ii) Assumption, e.g. 'he was walking in a straight line', 'no turning', 'he didn't stop', 'lawn mower didn't run out of petrol',	E1	Allow, e.g. 'lawn mower goes the same distance as Emyr', 'didn't push the mower faster than it was set', 'didn't hold the lawn mower back', 'Emyr kept going at a constant / same speed' Do not accept, e.g. '(lawn mower) kept going at a constant / same speed' 'flat terrain', 'Emyr can walk fast enough to keep up with the mower'
2(a)(iii) Impact, e.g. 'it could take longer to cut', 'more time needed', 'the answer is shorter than it will be',	E1	Strict FT from (a)(ii) Allow, e.g. 'longer (time)', 'increased (time)' Do not accept e.g. 'shorter (time)', 'could have been shorter or longer time', 'time could have been affected / impacted', 'it could vary' Do not accept contradictions
2(b)(4.5 litres for $25 \times 300=) \quad 7500(\mathrm{~m})$ (Cutting 100 metre uses) $100 \times 4.5 \div$ 7500 0.06 (litres)	B1 M1 A1	```Allow for (33.3... }\times9\times25= 7492.5 to 7500 (m) FT 'their 25 * 300'```
2(b) Alternative method: $\begin{gathered} 4.5 \div 25 \times 100 \div 300 \quad(=0.18) \\ \\ 0.06 \text { (litres) } \end{gathered}$	$\begin{aligned} & \text { M1 } \\ & \text { m1 } \\ & \text { A1 } \end{aligned}$	Allow use of 33.3(...) $\times 9$ for 300 $F T$ allowed use of $33.3(\ldots) \times 9$ for 300 leading to an answer of 0.06(... litres)

2(c) Any of the following conversions

- 1 litre ≈ 1.75 pints
- 1 pint $\approx 568 \mathrm{ml}$
- 1 gallon $=8$ pints AND

1 gallon $\approx 4.5(46 \ldots)$ litres
OR 1 litre ≈ 0.22 gallon
Any of the following methods

- $1() .3(0) \div 1.75$
- $1() .3(0) \times 568 \div 1000$
- $\frac{1(.) 3(0) \div 0.22}{8}$
- $\frac{1(.) 3(0) \times 4.5(46 \ldots)}{8}$

Answer in the range
(£)0.73 to (£)0.74(3) or
73 to 74(.3p)
AND
Conclusion 'No'
2(c) Alternative method 1:-
1 litre ≈ 1.75 pints $O R 1$ pint $\approx 568 \mathrm{ml}$
$60 \times 1.75 \quad O R \quad 60 \times 1000 \div 568$
Answer in the range

$$
\text { (£) } 1.05 \text { or } 105(p) \text { to (£) } 1.06 \text { or } 106(p)
$$

AND conclusion 'No'

B1 Also accept the following throughout:

- 1 litre ≈ 1.76 pints
- 1 pint $\approx 567 \mathrm{ml}$
- 1 pint $\approx 569 \mathrm{ml}$
- 1 pint $\approx 570 \mathrm{ml}$
- 1 gallon $=8$ pints

AND 1 litre ≈ 0.219 gallon

A1 Accept £0.74(...)p
Do not accept
$0.73 p, 0.74(\ldots) p, £ 73$ or $£ 74$

Do not accept 'Yes' unless statement saying e.g. ' 74 p is fairly close to 60 p', i.e. a comparison stated

Also accept the following throughout:

- 1 litre ≈ 1.76 pints
- 1 pint $\approx 567 \mathrm{ml}$
- 1 pint $\approx 569 \mathrm{ml}$
- 1 pint $\approx 570 \mathrm{ml}$

Accept £1.05p or $£ 1.06$ p
Do not accept
$£ 105$ or $£ 106$ or 1.05 p or 1.06 p
Do not accept 'Yes' unless statement saying e.g. '($£$) 1.05 is fairly close to
(£)1.30', i.e. a comparison stated
2(c) Alternative method 2:
1 pint >0.5 litre or 2 pints >1 litre
(But) $60<130 \div 2$ or $60<65$
or $2 \times 60<130$ or equivalent in $£ s$
Conclusion 'No'

M1 Accept 60 p $<£ 1.30 \div 2$ etc. with correct units included

Do not accept 'Yes' unless statement saying e.g. ' $60(p)$ is fairly close to $65(p)$ ', i.e. a comparison stated

3. (Change to CHF) 480×1.24 (No coins, so can buy only) 590 (CHF) (Cost to Amrit for 590 CHF is) $590 \div 1.24$ OR 480-(595.2-590) $\div 1.24$ (£) 475.81	M1 A2 M1 A1	(= 595.2 CHF) A1 for an answer of 595 (.2 CHF) FT 'their whole number multiple of $10 \mathrm{CHF}^{\prime} \div 1.24$ or $595 \div 1.24$ Depends only on previous M1 awarded Do not FT from $595 \div 1.24$ Must be to the nearest penny, do not accept ($£$)475.8(0) If no marks, due to consistent use of 1.28 then SC1 for sight of 610 CHF AND SC1 for (£)476.56
$\begin{aligned} & \text { 4(a) } \text { (Perpendicular height, h) } \\ & \left(h^{2}=1.8^{2}-0.7^{2}\right. \\ & \text { or } 1.8^{2}=h^{2}+0.7^{2} \\ & h^{2}=2.75 \text { or }(h=) \sqrt{2.75} \end{aligned}$ (Perpendicular height is) $h=1.658(\ldots \mathrm{~m})$ or $1.66(\mathrm{~m})$ or $1.7(\mathrm{~m})$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	Accept $\sqrt{ } 11 / 2$ Accept $\sqrt{11 / 2}$ Do not accept truncation to 1.6(m) or 1.65 (m) (But FT allowed) FT from M1, A0 for the correctly evaluated square root of 'their 2.75' provided 'their answer' <1.8 (m)
$\begin{aligned} & \text { (Volume of Luned's tent }=\text {) } \\ & 1 / 2 \times(0.7+0.7) \times 1.658 \ldots \times 2.5 \\ & \text { or equivalent } \end{aligned}$	M1	FT 'their derived $1.658(\ldots$. .)' provided $\neq 1.8$ or $\neq 0.7$
(Volume) Answer in the inclusive range $2.9\left(\mathrm{~m}^{3}\right)$ to $2.98\left(\mathrm{~m}^{3}\right)$ or $3\left(.0 \mathrm{~m}^{3}\right)$	A1	Check from correct working (in particular for an answer of $3\left(\mathrm{~m}^{3}\right)$) FT 1.6 m or 1.65 m to an answer in the range $2.8\left(\mathrm{~m}^{3}\right)$ to $2.89\left(\mathrm{~m}^{3}\right)$ FT from previous M1 awarded for a similar range
Organisation and communication	OC1	For OC1, candidates will be expected to: - present their response in a structured way - explain to the reader what they are doing at each step of their response - lay out their explanations and working in a way that is clear and logical - write a conclusion that draws together their results and explains what their answer means
Writing	W1	For W 1 , candidates will be expected to: - show all their working - make few, if any, errors in spelling, punctuation and grammar - use correct mathematical form in their working - use appropriate terminology, units, etc.
4(b) $200000 \mathrm{~cm}^{3}$	B1	

\begin{tabular}{|c|c|c|}
\hline \[
5(\mathrm{a})(\text { Volume }=) 9450 \div 2.7
\]
\[
3500\left(\mathrm{~cm}^{3}\right)
\] \& M2
A1 \& \begin{tabular}{l}
M 1 for \(\underline{\underline{9450}}=2.7\) \\
Volume \\
CAO \\
If no marks, award SC1 for an answer of either (steel \(9450 \div 7.8=\)) \\
\(1211\left(.5 \ldots \mathrm{~cm}^{3}\right)\) or \(1212\left(\mathrm{~cm}^{3}\right)\) or (carbon fibre \(9450 \div 1.6=\)) 5906(. \(25 \mathrm{~cm}^{3}\))
\end{tabular} \\
\hline \[
\begin{gathered}
5(\mathrm{~b})(\text { Mass }=) 1.6 \times 3500 \text { or } \\
1.6 \times 9450 \div 2.7 \\
5600(\mathrm{~g})
\end{gathered}
\] \& M2
A1 \& \begin{tabular}{l}
M1 for \(\frac{\text { Mass }}{3500}=1.6\) \\
FT 'their 3500' throughout provided
\[
\neq 9450
\] \\
Do not allow a FT answer of 9450(g)
\end{tabular} \\
\hline 6(a) 650 (steps) \& B1 \& \\
\hline \[
6 \text { (b) }(x=) \tan ^{-1} \frac{324}{800}
\]
\[
\text { (x =) 22(.047... } \left.{ }^{\circ}\right)
\] \& M2

A1 \& | OR alternative full method (Pythagoras' Theorem followed by relevant trigonometry) |
| :--- |
| (Note: Hypotenuse is $863.1 \ldots \mathrm{~m}$) |
| M1 for $\tan x=324 / 800$ |
| OR for statement of 'their trig ratio', with values substituted, from alternative full method |
| CAO |

\hline 7(a)(i) 1910-1919 \& B1 \&

\hline | 7(a)(ii) (Population of under-50s in 2011) $\begin{aligned} 36000 \times 20+40000 & \times 10 \\ + & +36000 \times 10 \\ & 43000 \times 10 \end{aligned}$ $=1910000$ |
| :--- |
| (Increase in population =) 40000 ISW | \& M1

A1

A1 \& | Note: check histogram for working Allow M1 for one error only in reading the scale |
| :--- |
| (36000 read as 35000 is 1 error) |
| Allow M1 for the sum of any 3 correct products |
| Ignore any additional calculations |
| CAO |
| FT 'their 1910000' provided they are working with the first 4 bars AND their answer is > 0 |
| A percentage increase of $2.139 \ldots \%$ implies M1A1A0 unless 40000 seen |

\hline $$
\begin{aligned}
& \frac{\text { Alternative method: }}{6000 \times 10(+5000 \times 10)-} \\
& \qquad \begin{array}{l}
1000 \times 20(-5000 \times 10) \\
=40000 \mathrm{ISW}
\end{array}
\end{aligned}
$$ \& M2

A1 \& | Allow M1 for one error only in reading the scale |
| :--- |
| Allow M1 for the sum of any 3 correct products |
| Ignore any additional calculations |
| CAO |
| A percentage increase of $2.139 \ldots \%$ implies M1A1A0 unless 40000 seen |

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline $$
7 \text { (a)(iii) } \frac{8(0000)}{30(0000)}(\times 100)
$$
= 27(\%) \& M1

A2 \& | Place value of both numbers needs to be consistent |
| :--- |
| Allow $76(000)$ from use of width 9.5 $285(000)$ |
| Allow $\frac{72(000)}{270(000)}$ from use of width 9 |
| Allow a method to find $8(0000)$ as a \% of 30(0000). Needs to be convincing |
| A1 for 26(\%) or 26(.6...\%), or |
| A1 for 0.27 |

\hline Alternative method:

$$
\frac{38(0000)}{30(0000)}(\times 100)-1(\times 100)
$$

= 27(\%) \& \begin{tabular}{l}
M1

A2

 \&

Place value of both numbers needs to be consistent

Allow 361(000) from use of width 9.5

$$
285(000)
$$

Allow $\frac{342(000)}{270(000)}$ from use of width 9

Allow a method to find 38(0000) as a \% of 30(0000) provided they show an intention to go on to subtract 100\% Needs to be convincing

A1 for 26(\%) or 26(.6...\%), or A1 for 0.27
\end{tabular}

\hline | 7(b) Valid reason e.g. |
| :--- |
| 'She didn't know how wide to make the bars', or 'It doesn't tell Danielle how old the oldest people were' | \& E1 \& | Allow e.g. |
| :--- |
| 'The age group is not accurate. It doesn't say the oldest age in the group' |
| Do not accept e.g. |
| 'She wouldn't be able to fit it on the graph paper', or 'It's a small amount compared to the others', or 'It's not an accurate age group' (without further explanation) |

\hline 7(c) Valid explanation that recognises there has been an increase in the population in this age group e.g. '(more) people (of this age group) came to live in Wales (than left Wales)' \& E1 \& | Do not accept an explanation that implies these are 2 different groups of people |
| :--- |
| Do not accept e.g. |
| 'Due to immigration and people leaving the country', or 'There has been an increase' |

\hline \[
$$
\begin{aligned}
& \text { 8(a)(i) } \text { (Number of grains of sand }=\text {) } \\
& \begin{array}{c}
\frac{3 \times 10^{1 t}}{1 \cdot 2 \times 10^{-3}} \text { or } \\
\frac{3 \times 10^{8}}{1.2 \times 10^{-6}} \text { or } \\
\mathrm{g} \\
\mathrm{~kg} \\
\frac{3 \times 10^{5}}{2 \times 10^{-9}} \\
\\
=2.5 \times 10^{14}
\end{array}
\end{aligned}
$$

\] \& | M2 |
| :--- |
| A1 | \& Or equivalent M1 for 3/1-2 with inconsistent place value

CAO

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline \[
\begin{aligned}
\& \begin{array}{l}
8(\mathrm{a})(\text { (ii) } \\
\text { (Vol of sand }=) 2.5 \times 10^{14} \times 0.32 \div 10^{9} \\
\text { or equivalent }
\end{array} \\
\& \quad=80000 \text { or equivalent }\left(\mathrm{m}^{3}\right)
\end{aligned}
\] \& M2 \& \begin{tabular}{l}
FT 'their \(2.5 \times 10^{14,}\) from (a)(i) \\
M1 for \(2.5 \times 10^{14} \times 0.32\) with place value errors \\
M1 for \(0.32 \div 10^{9}\) \\
FT from M2 only \\
Be aware of 80000 coming from incorrect workings
\end{tabular} \\
\hline 8(b) Sight or use of a correctly placed \(48^{\circ}\) or \(42^{\circ}\)
\[
(\text { distance }=) \underset{\sin 48\left({ }^{(}\right)}{200} \quad \text { OR } \quad \frac{200}{\cos 42\left({ }^{\circ}\right)}
\]
\[
=269(\cdot 126 \ldots \mathrm{~km})
\] \& B1
M2

A1 \& | Either in their diagram OR in their sin equation $O R$ in their cos equation |
| :--- |
| FT 'their 48' or 'their 42' provided <90 AND clearly indicated on their diagram or stated |
| M1 for $\sin 48\left({ }^{\circ}\right)=\frac{200}{\mathrm{x}}$ OR $\cos 42\left({ }^{\circ}\right)=\frac{200}{\mathrm{x}}$ |
| OR |
| M2 for alternative full method (trigonometry followed by Pythagoras) |
| M1 for trigonometry followed by |
| Pythagoras with values substituted correctly |
| FT from M2 only |
| Allow $270(\mathrm{~km})$ from correct workings |
| If no marks, and no diagram seen, or a correct diagram with no angles seen, SC1 for sight of $\stackrel{200}{\sin 42\left({ }^{\circ}\right)} \quad \text { OR } \quad \underline{200} \cos 48\left(\left(^{\circ}\right)\right.$ |

\hline \[
8(c) $$
\begin{array}{r}
45 \times \frac{3 \times 30(0000)}{5 \times 25(0000)} \\
=32.4 \text { (hours) } \\
=32 \text { (hours) } 24 \text { (minutes) }
\end{array}
$$

\] \& | M2 |
| :--- |
| A1 |
| A1 | \& | M1 for the appropriate use of 45 with any two of $3,5,30(0000), 25(0000)$ |
| :--- |
| CAO |
| FT from M1 previously awarded, provided of equivalent difficulty |

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
9(a) Tangent drawn at 60 seconds Idea of difference in \(\mathrm{y} \div\) difference in x \\
Correct gradient from difference in \(\mathrm{y} \div\) difference in \(x\)
\end{tabular} \& \begin{tabular}{l}
M1
m1 \\
A1
\end{tabular} \& \begin{tabular}{l}
Allow one error in counting squares or in reading the scale for m 1 only \\
Accept the gradient as a proper fraction or decimal or percentage Allow negative values Mark final answer
\end{tabular} \\
\hline \[
\begin{aligned}
\& \text { 9(b)(i) } \\
\& \begin{array}{c}
\frac{1}{2} \times 20 \times(36+0+2(34+29+20)) \\
\text { OR } \quad \frac{1}{2} \times 20 \times(36+68+58+40) \\
=2020(\mathrm{~m})
\end{array}
\end{aligned}
\] \& \begin{tabular}{l}
M2 \\
A1
\end{tabular} \& \begin{tabular}{l}
Award M1 if only one reading incorrect \\
FT from M1
\end{tabular} \\
\hline Alternative method:
\[
\begin{array}{r}
\frac{(36+34)}{2} \times 20+\frac{(34+29)}{2} \times 20+ \\
\frac{(29+20)}{2} \times 20+\frac{(20+0)}{2} \times 20 \\
=2020(\mathrm{~m})
\end{array}
\] \& M2

A1 \& | $(=700+630+490+200)$ |
| :--- |
| Each area may be seen as the sum of the area of a rectangle and triangle M1 for the sum of 4 areas with at least 2 correct |
| FT from M1 |
| If no marks awarded and 8 strips used, SC2 for summing the areas ($355+345+330+305+270+225+155+55$) leading to an answer of 2040 (m) OR |
| SC1 for summing the areas $(355+345+330+305+270+225+155+55)$ |
| but not arriving at an answer of 2040 (m) or |
| SC1 for the sum of 8 areas with any 6 correct |

\hline | 9(b)(ii) |
| :--- |
| Explanation e.g. |
| 'Increase the number of strips', or 'Use strips of smaller width' | \& E1 \&

\hline
\end{tabular}

10(a) (Volume of cone $=) \frac{1}{3} \times \pi \times 9^{2} \times h$	B1	Accept any notation or word(s) for 'height' Or $27 \pi h$, or $84 \ldots$ h
(Volume of cylinder $=$) $\pi \times 9^{2} \times 4 \mathrm{~h}$	B1	Or 324mh, or 1017...h
$10000=\frac{1}{3} \times \pi \times 9^{2} \times h+\pi \times 9^{2} \times 4 h$	M2	(Or $10000=351 \mathrm{mh})$ M1 for either: - the sum of 2 terms equated to 10000 with 1 term correct, OR - the sum of 2 correct terms equated to 10^{n} where n is an integer and $n>0$
$\begin{gathered} \mathrm{h}=\frac{10000 \times 3}{13 \times \pi \times 9^{2}} \text { or } \frac{10000}{1102 \ldots} \text { or } \frac{10000}{351 \pi} \\ \mathrm{~h}=9 \cdot 0(\mathrm{~cm}) \text { to } 9 \cdot 1(\mathrm{~cm}) \end{gathered}$	m1 A1	FT from M1 No FT from M1m1
```(Total height =) 45.3 (cm) to 45.5 (cm) or 45 (cm)```	B1	FT from M1 or M2 for $5 \times$ 'their 9.0(68...)'
Alternative methods:		
$\frac{1}{3} \times \pi \times 9^{2} \times \frac{h}{4}$	B1	Or 6.75mh, or $21 \ldots h$
$\pi \times 9^{2} \times h$	B1	Or $81 \pi h$, or 254...h
$10000=\frac{1}{3} \times \pi \times 9^{2} \times \frac{h}{4}+\pi \times 9^{2} \times h$	M2	(Or $10000=351 \pi h / 4$ )   M1 for either:   - the sum of 2 terms equated to 10000 with 1 term correct, OR   - the sum of 2 correct terms equated to $10^{n}$ where $n$ is an integer and $n>0$
$h=\frac{10000 \times 12}{13 \times \pi \times 9^{2}} \text { or } \frac{10000}{275 \ldots} \text { or } \frac{40000}{351 \pi}$	m1	FT from M1
$h=36.2(\mathrm{~cm})$ to 36.3 (cm)	A1	No FT from M1m1
$45 \cdot 3(\mathrm{~cm})$ to $45 \cdot 5(\mathrm{~cm})$ or 45 (cm)	B1	$\begin{aligned} & \text { FT from M1 or M2 for } \\ & 36 \cdot 2(746 \ldots) \text { 'their } \end{aligned}$



