Surname
Other Names

Centre Number

-
 шјес cbac

GCSE

3310U60-1

MATHEMATICS - NUMERACY
 UNIT 2: CALCULATOR-ALLOWED
 HIGHER TIER

THURSDAY, 8 NOVEMBER 2018 - MORNING
1 hour 45 minutes

ADDITIONAL MATERIALS

A calculator will be required for this paper.
A ruler, a protractor and a pair of compasses may be required.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen. Do not use gel pen or correction fluid.
You may use a pencil for graphs and diagrams only.
Write your name, centre number and candidate number in the spaces at the top of this page.
Answer all the questions in the spaces provided.
If you run out of space, use the continuation page at the back of the booklet. Question numbers must be given for the work written on the continuation page.
Take π as 3.14 or use the π button on your calculator.

For Examiner's use only		
Question	Maximum Mark	Mark Awarded
1.	8	
2.	10	
3.	5	
4.	8	
5.	6	
6.	4	
7.	9	
8.	14	
9.	7	
10.	9	
Total	80	

INFORMATION FOR CANDIDATES

You should give details of your method of solution when appropriate.
Unless stated, diagrams are not drawn to scale.
Scale drawing solutions will not be acceptable where you are asked to calculate.
The number of marks is given in brackets at the end of each question or part-question.
In question 4(a), the assessment will take into account the quality of your linguistic and mathematical organisation, communication and accuracy in writing.

Formula List - Higher Tier

Area of trapezium $=\frac{1}{2}(a+b) h$

Volume of prism $=$ area of cross-section \times length

Volume of sphere $=\frac{4}{3} \pi r^{3}$
Surface area of sphere $=4 \pi r^{2}$

Volume of cone $=\frac{1}{3} \pi r^{2} h$
Curved surface area of cone $=\pi r l$

In any triangle $A B C$
Sine rule $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$
Cosine rule $a^{2}=b^{2}+c^{2}-2 b c \cos A$
Area of triangle $=\frac{1}{2} a b \sin C$

The Quadratic Equation

The solutions of $a x^{2}+b x+c=0$ where $a \neq 0$ are given by $\quad x=\frac{-b \pm \sqrt{\left(b^{2}-4 a c\right)}}{2 a}$

Annual Equivalent Rate (AER)

AER, as a decimal, is calculated using the formula $\left(1+\frac{i}{n}\right)^{n}-1$, where i is the nominal interest rate per annum as a decimal and n is the number of compounding periods per annum.

1. Tube Cycles makes a large number of bikes each day.
(a) On 1st December 2016, 4000 bikes were made at the Tube Cycles factory. The Tube Cycles factory was working at 80% capacity on that day. This means that only 80% of the maximum possible number of bikes were made. When the factory works at 95% capacity, how many bikes are made in one day?
(b) (i) In October 2018, the manager of the Tube Cycles factory recorded the number of bikes made each day.
Here are her results.

Number of bikes, b	Frequency
$1000 \leqslant b<2000$	3
$2000 \leqslant b<3000$	12
$3000 \leqslant b<4000$	9
$4000 \leqslant b<5000$	7

Calculate an estimate of the mean number of bikes made per day during October 2018.
\qquad
\qquad
\qquad
\qquad
(ii) Which group contains the median number of bikes made per day? Circle your answer.
$1000 \leqslant b<2000 \quad 2000 \leqslant b<3000 \quad 3000 \leqslant b<4000$
2. Emyr has set his lawn mower to work at a constant speed of 2000 m per hour. He walks a distance of 300 m when he cuts his lawn.

(a) (i) Use this information to calculate how long Emyr takes to cut his lawn. Give your answer in minutes.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
It takes Emyr \qquad minutes.
(ii) What assumption have you made?
\qquad
\qquad
(iii) What impact would this have on the time you calculated in answering (a)(i)?
\qquad
(b) Emyr cuts his lawn 25 times a year.

He uses 4.5 litres of petrol in his lawn mower each year.
How much petrol does the lawn mower use for every 100 metres that Emyr walks? Give your answer in litres.
(c) Petrol costs $£ 1.30$ per litre.

Emyr says,
"The petrol for my lawn mower costs me approximately 60p per pint."
Is Emyr correct?
You must show all your working.

3. Amrit is planning to go to Switzerland.

The table below shows the rates for exchanging British pounds ($£$) and Swiss francs (CHF) at a money exchange shop.

Buy Swiss francs (CHF)	$£ 1$ buys 1.24 CHF
Sell Swiss francs (CHF)	1.28 CHF buys $£ 1$

The exchange shop:

- has all possible British notes and coins,
- sells and buys CHF notes only (no coins are available or accepted),
- has $10 \mathrm{CHF}, 20 \mathrm{CHF}, 50 \mathrm{CHF}, 100 \mathrm{CHF}, 200 \mathrm{CHF}$ and 1000 CHF notes.

Amrit has $£ 480$ to buy Swiss francs.
Calculate

- the maximum number of Swiss francs that Amrit can buy, and
- how much, to the nearest penny, this will cost him.

You must show all your working.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
4. (a) In this part of the question, you will be assessed on the quality of your organisation, communication and accuracy in writing.

Luned's tent is in the shape of a triangular prism.
The cross-section of her tent is an isosceles triangle.
She noted a few measurements on a diagram of her tent, as shown below.

Diagram not drawn to scale
Calculate the volume of Luned's tent.
Give your answer in m^{3}.
You must show all your working.

Volume of Luned's tent is m^{3}
(b) Which of the following is equal to $0.2 \mathrm{~m}^{3}$?

Circle your answer.

5．Cycle frames are made from steel，aluminium or carbon fibre． The table below gives the density of steel，aluminium and carbon fibre．
The table below gives the density of steel，aluminium and ca

Material	Density $\left(\mathrm{g} / \mathrm{cm}^{3}\right)$
Steel	7.8
Aluminium	2.7
Carbon fibre	1.6

Owain has a cycle frame made from aluminium．
His cycle frame has a mass of 9450 g ．
（a）Calculate the volume of aluminium in Owain＇s cycle frame． Give your answer in cm^{3} ．
\qquad
\qquad
\qquad
\qquad

Volume of aluminium in Owain＇s cycle frame is cm^{3}
（b）Bethan has a cycle frame that is identical to Owain＇s cycle frame．
However，her cycle frame is made from carbon fibre．
Calculate the mass of this frame．
Give your answer in grams．

［3］
6. The diagram below is a sketch of the Eiffel Tower. The sketch is drawn to scale.
The Eiffel Tower is 324 metres tall.
Visitors can climb up to the Level 2 viewing platform using the internal steps.

(a) Which of the following is a reasonable estimate of the number of steps from the ground to the Level 2 viewing platform?
150
650
2500
3500
6500

Calculate the angle of elevation of the top of the Eiffel Tower from the point P.
7. Danielle is studying the growth of the population of Wales. She used the 2001 and 2011 Census data to draw these histograms.

Frequency density

Frequency density

(i) Circle the earliest decade in which anyone included in the histograms could have been born.

1890-1899 1900-1909 1910-1919 1920-1929 1930-1939
(ii) From Danielle's histogram, the population of under-50s in Wales was 1870000 in 2001.

Calculate the increase in the population of under-50s in Wales from 2001 to 2011.
(iii) The 60 to 69-year-olds saw the biggest increase in population from 2001 to 2011. Calculate the percentage increase in the number of 60 to 69-year-olds from 2001 to 2011.
Give your answer to the nearest whole number.
(b)

Age group	Population in 2001	Population in 2011
90 and over	19300	25200

The data in this table was also available to Danielle.
Explain why Danielle did not include this data in her histograms.
\qquad
\qquad
\qquad
\qquad
\qquad
(c) The number of 40 to 49 -year-olds in 2011 was different to the number of 30 to 39 -yearolds in 2001.
Give a full explanation for what could have caused this.
8. Heledd is the captain of a cargo ship. She is planning her next voyage.

(a) Heledd has been employed to deliver 3×10^{5} tonnes of sand.

Heledd needs to know the volume of the sand before the sand can be loaded on to the ship.
She has been given the following information about the sand:

Mass of a grain of sand	Volume of a grain of sand
1.2×10^{-3} grams	$0.32 \mathrm{~mm}^{3}$

(i) Calculate the number of grains of sand in 3×10^{5} tonnes of sand. Give your answer in standard form.
\qquad
\qquad
\qquad
\qquad
(ii) Calculate the volume of the 3×10^{5} tonnes of sand in \mathbf{m}^{3}.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) Heledd has been given the following instructions for her voyage:

- From port A, sail 200 km due south to port B.
- From port B, sail due east to port C.
- From port C, sail on a bearing of 318° back to port A.

Use the space below to draw a sketch of the ship's voyage.

Calculate the distance from port C directly back to port A.
(c) The last time the cargo ship was unloading sand in port B, it took 3 cranes 45 hours to unload 250000 tonnes of sand.

Port B now has 5 cranes.
Calculate the time it will take 5 cranes to unload 300000 tonnes of sand.

You can assume that all cranes unload sand at the same rate, and that all other conditions remain the same.

Give your answer in hours and minutes.

Examiner

You must show all your working.
[4]

Time it will take is \qquad hours and \qquad minutes
9. A train manufacturer has developed a new braking system.

The velocity-time graph shows the velocity of a train from when the new brakes are applied until it comes to rest.

Velocity (ms^{-1})

(a) Estimate the train's deceleration at time 60 seconds.
(b) (i) Calculate an estimate of the distance travelled by the train from the instant the brakes are applied until it comes to rest. You must use exactly 4 strips of equal width.
(ii) Explain how you could use the graph to gain a more accurate estimate of the distance travelled.
10. Gardeners can apply weedkiller to large areas of land by using a spray gun. Weedkiller is stored in a large bottle that gardeners carry on their backs, and this feeds the spray gun.

A gardening company has designed the bottle shown below. It consists of a hollow cylinder and cone that are joined.

Diagram not drawn to scale

The base radius of the cone and the radius of the cylinder are both 9 cm .
The height of the cylinder is four times the vertical height of the cone.
The bottle has been designed so that it has a capacity of 10 litres.
(a) Calculate the total height of the bottle.

END OF PAPER

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

Question number	Additional page, if required. Write the question number(s) in the left-hand margin.	Examiner only

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

