Rewarding Learning

Candidate Number
\square

Double Award Science:

 Chemistry
Unit C1

Higher Tier
[GSD22]
GSD22

THURSDAY 19 MAY 2016, MORNING

TIME

1 hour.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number in the spaces provided at the top of this page.
You must answer the questions in the spaces provided.
Do not write outside the boxed area on each page or on blank pages.
Complete in blue or black ink only. Do not write with a gel pen.
Answer all eight questions.

INFORMATION FOR CANDIDATES

The total mark for this paper is 70 .
Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question.
Quality of written communication will be assessed in Question 4.
A Data Leaflet, which includes a Periodic Table of the elements is provided.

1 Many chemists contributed to the modern Periodic Table including Newlands and Mendeleev.
(a) Complete the table below to show the contribution of each chemist.

Place a tick (\checkmark) in each correct box.

Contribution	Newlands only	Mendeleev only	Both Newlands and Mendeleev	Neither Newlands nor Mendeleev
stated the Law of Octaves				
arranged elements in order of relative atomic mass				
included noble gases				
left gaps for undiscovered elements				

(b) A student is given a Periodic Table.

Column A								Column B									
							$\begin{aligned} & \text { midesen } \\ & \mathbf{H} \end{aligned}$										-
Licma												B	${ }_{\text {come }}^{\text {com }}$	$\stackrel{\text { nesem }}{\text { N }}$	$0_{0}^{\text {amem }}$	$\stackrel{\text { name }}{\text { ma }}$	${ }^{\text {cosem }}$
												Al^{131}	(in	${ }^{15}$	Stices	Cus	(en
${ }_{\text {knose }}$	$\begin{aligned} & \text { Com } \\ & \mathrm{Com} \\ & \hline \end{aligned}$	${ }^{21} \mathrm{Sc}$		\mathbf{V}		Mn^{25}	$\begin{aligned} & 26 \\ & \mathbf{F e}^{26} \end{aligned}$		${ }^{28}$		$\begin{aligned} & \text { anc } \\ & \text { Zn } \\ & \mathbf{Z n} \end{aligned}$	$\begin{array}{\|c} \substack{310 \\ \text { Ga }} \end{array}$	am Ge 324	$\begin{array}{\|l\|l\|} \hline 336 \\ \text { A3 } \end{array}$	$\begin{aligned} & \substack{340 \\ \text { Se }} \end{aligned}$	cosme	
Remme	$\begin{gathered} { }^{38} \\ { }^{38} \end{gathered}$	- ${ }_{\text {cese }}$	$\begin{aligned} & 2 \\ & \mathbf{Z n} \mathbf{4 0} \end{aligned}$	${ }_{\substack{\text { ancen }}}$	${ }_{\text {Mo }}^{\text {M2 }}$	${ }^{43}$	$\begin{array}{\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c} \\ \mathrm{an} \end{array}$	$\begin{aligned} & \substack{404 m \\ \text { Rhem }} \end{aligned}$	$\begin{aligned} & \text { andem } \\ & \text { Pd } \end{aligned}$	Ag^{47}	$\mathrm{Cd}_{\substack{4 \\ 48}}$	$\begin{array}{\|l\|l\|} \hline \text { and } \\ \hline \text { and } \\ \text { In } \end{array}$	$\begin{aligned} & \substack{\text { mo } \\ \text { Sn } \\ \hline} \end{aligned}$	Sb	-	cose	(in
$\begin{aligned} & \substack{\text { cosem } \\ \text { sis }} \end{aligned}$	$\begin{aligned} & \text { Bat } \\ & \text { sed } \end{aligned}$	La	${ }_{\text {Hfen }}$	$\begin{aligned} & 7,7 \\ & T a \end{aligned}$	$\stackrel{\sim}{w}$	$\begin{array}{\|l\|l\|} \\ \hline \end{array}$				$\begin{array}{\|c} \substack{\text { and } \\ \text { Aus }} \end{array}$			$\begin{array}{\|c\|c\|c\|c\|c\|c\|} \substack{\text { and }} \end{array}$			At	(en
		A	$\begin{aligned} & 1048 \\ & \text { Rf } \end{aligned}$	Db	$\begin{aligned} & \text { 106 } \\ & \text { Sg } \end{aligned}$		$\begin{array}{\|l} \\ \text { Hs } \\ \text { Hom } \end{array}$	Mt	$\begin{array}{\|l\|l\|l\|l\|l\|l\|} 100 \\ \mathbf{S} \end{array}$	$\begin{array}{\|l} \\ \mathbf{R g} \\ \mathbf{2 n} \end{array}$	$\begin{aligned} & 112 \\ & \mathbf{C l}^{12} \end{aligned}$						

For each of the five questions below three answers are given. Only one is correct. Circle the correct answer.
(i) The elements in Column A are:
alkali metals
Group 2
Period 2
(ii) The physical state at room temperature of all the elements in Column B is: solid liquid gas
(iii) The elements $\mathrm{N}, \mathrm{O}, \mathrm{F}, \mathrm{Cl}, \mathrm{Br}$ and I are all:
gases
diatomic
inert
(iv) The elements in Column B all have: only 3 electrons

3 electrons in outer shell
3 electrons in first shell
(v) The solid black line separates:
metals and gases
solids and liquids
metals and non-metals
(c) (i) Name the element which is in Period 2 and Group 4.
(ii) Name an element whose atoms have three shells and five electrons in the outer shell.

2 A labelled diagram, used in an advertisement for a cordless vacuum cleaner, is shown below.

(a) Give the symbol for a lithium ion.
\qquad
(b) What is an alloy?
\qquad
\qquad
(c) Give one property needed for the alloy used in the frame of the vacuum cleaner.
\qquad

3 Water has a melting point of $0^{\circ} \mathrm{C}$ and is an excellent solvent.
(a) What is meant by the chemical terms:
(i) solvent?
\qquad
\qquad
(ii) melting point?
\qquad
\qquad
\qquad
(b) Give two physical properties of water apart from the fact that it has a melting point of $0^{\circ} \mathrm{C}$ and is an excellent solvent.

1. \qquad
2. \qquad

Compound A is soluble in water. It has a solubility of $2.9 \mathrm{~g} / 100 \mathrm{~g}$ of water at $20^{\circ} \mathrm{C}$.
(c) Why must the temperature be stated when giving the solubility of a substance in water?
\qquad
\qquad
（d）A dot and cross diagram of the bonding in water is shown below．

\qquad
（i）Fill in the correct labels for the pairs of electrons labelled \mathbf{A} and \mathbf{B} ．
（ii）Name the type of bonding in water．
\qquad
（iii）Choose two compounds from the list below which have the same type of bonding as water．

Tick (\mathcal{J}) the two correct boxes．
potassium iodide \square
carbon dioxide \square
copper sulfate

calcium carbonate \square
hydrogen sulfide \square

4 In this question you will be assessed on your written communication skills including the use of specialist scientific terms.

Magnesium forms a 2^{+}ion and oxygen forms a 2^{-}ion.
Compare and contrast the Mg^{2+} ion and the O^{2-} ion.
You should include information about:

- the number and type of the particles present in each ion
- the electron configuration of each ion and
- how the ions are formed from their atoms.
\qquad

5 Metal oxides and metal carbonates will react with acids to form salts．
（a）Complete the word equation for the reaction between copper oxide and sulfuric acid．
copper oxide + sulfuric acid \rightarrow
（b）Balance the symbol equation below．
（c）Write a balanced symbol equation for the reaction between copper carbonate
（c）Write a balanced symb
\qquad
（d）The reaction between sodium hydroxide and hydrochloric acid is known as a neutralisation reaction．Write an ionic equation to describe this neutralisation． Include state symbols．
， $+$

$$
\mathrm{HCl} \quad \mathrm{CuO} \quad \rightarrow \quad \mathrm{CuCl}_{2} \quad+\quad \mathrm{H}_{2} \mathrm{O}
$$

\square

$+$
\qquad

6 Air is a mixture of gases including nitrogen, N_{2}, and very small amounts of methane, CH_{4}.

Draw dot and cross diagrams to show the bonding in a molecule of methane and a molecule of nitrogen. Show the outer electrons only.
methane
nitrogen

7 (a) Complete the table below which gives information about the physical properties of the halogens.

Name	Formula	State at room temperature	Colour
bromine			red-brown
chlorine		gas	
fluorine		gas	yellow
iodine			grey-black

(b) Complete the sentence below which describes the trend in melting points of the halogens as Group 7 is descended.

The melting points of halogens \qquad as Group 7 is descended.
(c) Explain why the halogens all form ions with a single negative charge.
\qquad
\qquad
(d) When chlorine is bubbled through a solution of sodium iodide the colour of the solution darkens.
(i) Write a balanced symbol equation for the reaction of chlorine with sodium iodide.
(ii) Explain why the colour of the solution darkens in this reaction.
\qquad
\qquad
\qquad

8 Calcium metal can be produced by passing an electric current through molten calcium fluoride, CaF_{2}, using graphite rods known as electrodes.
(a) What name is given to this process?
\qquad
(b) Explain why molten calcium fluoride can conduct electricity.
\qquad
\qquad
(c) What happens to the molten calcium fluoride as the electricity passes through?

Calcium is produced at the cathode.
(d) (i) Why is calcium produced at the cathode?
\qquad
\qquad
(ii) Explain, in words, in terms of the electrons involved, how the calcium is produced at the cathode during the electrolysis.
\qquad
\qquad
\qquad
\qquad
(e) Graphite is a suitable material for the electrodes as it is a good conductor of electricity.
Give two other properties of graphite which make it suitable for use as electrodes.

1. \qquad
\qquad
2. \qquad
\qquad

THIS IS THE END OF THE QUESTION PAPER

DO NOT WRITE ON THIS PAGE

For Examiner's use only	
Question Number	Marks
1	
2	
3	
4	
5	
6	
7	
8	

Permission to reproduce all copyright material has been applied for.
In some cases, efforts to contact copyright holders may have been unsuccessful and CCEA will be happy to rectify any omissions of acknowledgement in future if notified.

