Rewarding Learning

Candidate Number
\square

Double Award Science:

 Chemistry
Unit C1

Higher Tier
[GSD22]
GSD22

THURSDAY 17 MAY 2018, MORNING

TIME

1 hour.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number in the spaces provided at the top of this page.
You must answer the questions in the spaces provided.
Do not write outside the boxed area on each page or on blank pages.
Complete in black ink only. Do not write with a gel pen.
Answer all seven questions.

INFORMATION FOR CANDIDATES

The total mark for this paper is 70 .
Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question.
Quality of written communication will be assessed in Question 2(b).
A Data Leaflet, which includes a Periodic Table of the elements is provided.

1 Read the passage about lithium and some of its uses. Then use this information along with your own knowledge and understanding to answer the questions that follow.

Lithium is a very light, soft Group 1 metal and is an excellent conductor of electricity. It can be extracted by electrolysis of molten lithium chloride. Lithium is used in making batteries for mobile phones and golf trolleys. Lithium-aluminium alloys are used in the manufacture of aircraft, bicycle frames and high speed trains.
(a) (i) What name is given to the Group 1 elements?
(ii) How are lithium and the other Group 1 elements stored in the laboratory?
(b) (i) What is meant by the term electrolysis?
\qquad
\qquad
(ii) Write a half equation to show what happens at the cathode during the electrolysis of molten lithium chloride.
(iii) Apart from lithium, what else is produced during the electrolysis of molten lithium chloride?
\qquad
(c) Why is lithium used in batteries for mobile phones and golf trolleys?
(d) Give two main advantages of using lithium-aluminium alloys.

1. \qquad
2. \qquad
(e) Some people are concerned that we may run out of lithium. Suggest why this might be the case and how might the problem be reduced.

Reason why we might run out of lithium:
\qquad
How the problem might be reduced:

2 Sodium reacts with sulfur to form a compound called sodium sulfide.
(a) Complete the diagrams below to show the electronic structures of:

a sulfur atom
(b) In this question you will be assessed on your written communication skills including the use of specialist scientific terms.

Describe in words:

1. how the electronic structures of both the sodium atom and the sulfur atom change in order to form sodium sulfide. Your answer should include the charges on the ions formed, and the formula of the compound produced.
\qquad
2. at least two physical properties you would expect sodium sulfide to have.
\qquad
\qquad
\qquad
\qquad
\qquad

3 (a) What is a covalent bond?
(b) In the space below draw a dot and cross diagram to show how covalent bonding occurs in a chlorine molecule, CI_{2}. Show all the electrons.
(c) Complete the three sentences below by adding the missing words:

Covalent bonding is typical of \qquad elements and compounds.

The term diatomic means that there are \qquad atoms
covalently bonded in a \qquad
Covalent bonds are \qquad and \qquad
amounts of \qquad are needed to break them.
(d) In the space below draw a dot and cross diagram to show the bonding in a nitrogen molecule, N_{2}. Show all the electrons. Label your diagram to identify a lone pair of electrons.

4 This question is about solubility.
(a) Complete the sentence below to define solubility.

Solubility is the mass of \qquad
\qquad
\qquad
\qquad

The table below gives information on whether or not some salts are soluble (S) or insoluble (I) in water.

cation	carbonate	chloride	nitrate	sulfate
sodium	S	S	S	S
lead	I	I	S	I
magnesium	I	S	S	S
ammonium	S	S	S	S
calcium	I	S	S	S

(b) Use the information in the table to complete the sentences which follow:
(i) For the cations:

All \qquad and \qquad
salts are soluble.
(ii) For the anions:

All chlorides are \qquad except for \qquad .
(c) Predict whether sodium bromide and zinc nitrate are soluble (S) or insoluble (I) in water.
sodium bromide \qquad zinc nitrate \qquad
(d) A student mixed a colourless sodium chloride solution with a colourless lead nitrate solution. Why did the mixture turn white?
\qquad
\qquad
\qquad

5 (a) The table below gives information about the salts formed when four bases react with acids. Complete the table by filling in all the gaps.

Base	Acid	Formula of cation in salt	Formula of anion in salt	Formula of salt produced
calcium hydroxide	hydrochloric acid	sulfuric acid	Cu^{2+}	CaCl_{2}
		Mg^{2+}	Cl^{-}	CuSO_{4}
magnesium oxide		NO_{3}^{-}		
sodium hydroxide	nitric acid			

(b) A word equation is given below:

$$
\underset{\text { hydroxide }}{\text { sodium }}+\underset{\text { acid }}{\text { hydrochloric }} \rightarrow \underset{\text { chloride }}{\text { sodium }}+\text { water }
$$

(i) Use this equation to help write an ionic equation to show the formation of sodium chloride.
(ii) The reaction between sodium hydroxide and hydrochloric acid can be described as a neutralisation. Write an ionic equation including state symbols for a neutralisation reaction.

6 The table below gives information about the physical properties of four substances A, B, C and D. Use the information to help you answer the questions which follow.

Substance	Melting point/ ${ }^{\circ} \mathrm{C}$	Boiling point/ ${ }^{\circ} \mathrm{C}$	Electrical conductivity when solid	Electrical conductivity when molten
A	808	1465	poor	good
B	3650	4200	good	good
C	660	2500	good	good
D	-182	-161	poor	poor

(a) Which substance A, B, C or D has a molecular covalent structure? Explain your choice.

Substance with a molecular covalent structure: \qquad
Explanation:
\qquad
\qquad
(b) Which substance A, B, C or D is made up of oppositely charged ions in a giant lattice structure? Explain your choice.

Substance made up of oppositely charged ions in a giant lattice structure:
\qquad
Explanation:
\qquad
\qquad
(c) Which substance A, B, C or D could be graphite? Explain your choice.

Substance which could be graphite:
Explanation:
\qquad
\qquad
(d) Which substance A, B, C or D is a metal with a relatively low melting point? Explain your choice.

Substance which is a metal: \qquad
Explanation:
\qquad

7 （a）When chlorine gas is bubbled into sodium iodide solution，it causes a chemical reaction which results in a colour change in the solution．
（i）Write a balanced symbol equation for this reaction．
（ii）Describe the colour change in the solution．
The colour changes from \qquad
to \qquad
（iii）The reaction is described as a displacement reaction．
Complete the sentence：
The reaction between chlorine and sodium iodide is described as a displacement reaction because \qquad is
displacing \qquad $-$
（b）When bromine is added to sodium iodide solution a similar reaction occurs to that of chlorine with sodium iodide solution．

Explain why chlorine and bromine react in similar ways．
\qquad
\qquad

THIS IS THE END OF THE QUESTION PAPER

\qquad

DO NOT WRITE ON THIS PAGE

For Examiner's use only	
Question Number	Marks
1	
2	
3	
4	
5	
6	
7	

Total
Marks
Examiner Number

Permission to reproduce all copyright material has been applied for.
In some cases, efforts to contact copyright holders may have been unsuccessful and CCEA will be happy to rectify any omissions of acknowledgement in future if notified.

SYMBOLS OF SELECTED IONS

Positive ions

Name	Symbol
Ammonium	NH_{4}^{+}
Chromium(III)	Cr^{3+}
Copper(II)	Cu^{2+}
Iron(II)	Fe^{2+}
Iron(III)	Fe^{3+}
Lead(II)	Pb^{2+}
Silver	Ag^{+}
Zinc	Zn^{2+}

Negative ions
Name Symbol Carbonate CO_{3}^{2-} Dichromate $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$ Ethanoate $\mathrm{CH}_{3} \mathrm{COO}^{-}$ Hydrogen carbonate HCO_{3}^{-} Hydroxide OH^{-} Methanoate HCOO^{-} Nitrate NO_{3}^{-} Sulfate SO_{4}^{2-} Sulfite SO_{3}^{2-}

SOLUBILITY IN COLD WATER OF COMMON SALTS, HYDROXIDES AND OXIDES

Soluble
All sodium, potassium and ammonium salts
All nitrates
$\left.\begin{array}{l}\text { Most chlorides, bromides and iodides } \\ \text { EXCEPT } \\ \text { silver and lead chlorides, bromides and iodides } \\ \hline \text { Most sulfates } \\ \text { EXCEPT } \\ \text { lead and barium sulfates } \\ \text { Calcium sulfate is slightly soluble } \\ \hline \\ \hline \text { Most carbonates } \\ \text { EXCEPT } \\ \text { sodium, potassium and ammonium carbonates } \\ \hline \begin{array}{l}\text { Most hydroxides } \\ \text { EXCEPT } \\ \text { sodium, potassium and ammonium hydroxides } \\ \hline \text { Most oxides } \\ \text { EXCEPT } \\ \text { sodium, potassium and calcium oxides which react with water } \\ \hline\end{array}\end{array}\right\}$Insole

DATA LEAFLET

For the use of candidates taking
Science: Chemistry,
Science: Double Award or Science: Single Award

Copies must be free from notes or additions of any kind. No other type of data booklet or information sheet is authorised for use in the examinations.
Contents

Page

Periodic Table of the Elements 2-3
Symbols of Selected Ions4

Solubility of Common Salts

Rewarding Learning

Rewarding Learning 1																	
	2											3	4	5	6	7	
	9												${ }_{6}^{12} C_{\text {Carbon }}^{C}$	${\underset{7}{\text { Nitrogen }}}_{14}^{\mathrm{N}}$		${\underset{9}{\text { Fluorine }}}_{19}^{F}$	Ne_{10}^{20}
23	24											$\begin{aligned} & 27 \\ & \text { Aluminium } \\ & 13 \end{aligned}$	${\underset{S}{\text { Silicon }}}_{28}$	$\begin{array}{\|c} \hline 31 \\ \hline \end{array}$	${\underset{\text { sulfur }}{ } \mathrm{S}_{16} \mathrm{~S}}^{2}$		${\underset{18}{\text { Argon }}}^{40}$
$\begin{array}{\|l} 39 \\ \text { Potassium } \\ \mathbf{K} \end{array}$	40 $\begin{array}{\|c} \substack{\text { Calcium } \\ 20} \\ \hline \end{array}$			${\underset{y}{51}}_{\substack{51 \\ \text { vanadium } \\ 23}}$			${ }_{56}^{56}$		$5 \mathrm{Ni}_{28}^{59}$	${\underset{29}{\text { Copper }}}_{\mathbf{C u}}^{\text {Con }}$	${\underset{30}{\text { zinc }}}_{65}$	$\begin{array}{\|c} \hline 70 \\ \text { Gallam }_{\text {Gallium }} \\ \hline \end{array}$	${\underset{y}{\text { Germanium }}}_{32}^{\text {Ge }}$	$\boldsymbol{A S}_{\text {Arsenic }}^{75}$	79	${\underset{c}{\text { Br }}}_{\substack{80 \\ 35}}^{\text {Bromine }}$	${\underset{c}{\text { Krypton }}}_{\mathbf{K 4}}$
85	${\underset{y y y}{\text { Strontium }}}_{\mathbf{S 8}}$	$\begin{array}{\|c} \hline 89 \\ Y \\ \text { Yttrium } \\ 39 \end{array}$	$\begin{array}{\|l\|} \hline 91 \\ Z_{\text {Zirconium }} \\ 40 \end{array}$	$\begin{array}{\|c} 93 \\ \mathbf{N B O}_{\text {Niobium }} \\ \hline 41 \end{array}$		99 Technetium 43			$\begin{array}{\|c} 106 \\ \boldsymbol{P}_{\text {Palladium }}^{\text {P }} \\ 46 \\ \hline \end{array}$	$\begin{gathered} 108 \\ \boldsymbol{A g}_{\text {Silver }} \\ 47 \end{gathered}$	$\begin{array}{\|c\|} \hline 112 \\ \underbrace{\text { Cadmium }}_{48} \\ 48 \\ \hline \end{array}$		$S_{50}^{119} n_{\operatorname{Tin}}$		${ }_{\text {Tellurium }}^{128}$	${ }_{53}^{127}$	${\underset{\text { Xenon }}{131}}_{54}^{131}$
					$\begin{gathered} 184 \\ \text { Wungsten } \\ 74 \end{gathered}$	$\underset{\substack{\text { Rhenium } \\ 75}}{R_{2}}$		$\prod_{77}^{192}{ }_{7 \times}$	$\begin{array}{\|c} 195 \\ \text { Platinum } \\ 78 \\ \hline \end{array}$	$\begin{gathered} 197 \\ \mathbf{A U}_{\text {Gold }} \\ \hline 79 \end{gathered}$		$\begin{array}{\|c\|} \hline 204 \\ \underbrace{\text { Thallium }}_{81} \\ \hline 10 \end{array}$	$\begin{gathered} 207 \\ P_{82}^{\text {Lead }} \\ \hline \end{gathered}$				
223	$\begin{gathered} 226 \\ \mathrm{Ra}_{\text {Radium }} \mathrm{ar} \\ \hline \end{gathered}$	${\underset{y}{\text { Actinium }}}_{\mathbf{2 2 7}}^{\mathbf{A l}^{+}}$	$\begin{array}{\|c\|} \hline 261 \\ \mathrm{R}^{\text {Rutherfordium }} \\ 104 \end{array}$	$\begin{gathered} 262 \\ D_{i} 6 \\ 105 \end{gathered}$	$\begin{array}{\|c\|} \hline 263 \\ \underbrace{106}_{\text {Seaborgium }} \\ \hline 106 \\ \hline \end{array}$	262 107	$\begin{array}{\|c} 265 \\ \mathrm{HS}_{\text {Hassium }}^{2} \\ 108 \end{array}$	$\begin{array}{\|c} 266 \\ M+1 \\ \text { Meitnerium } \\ 109 \end{array}$		${\underset{\text { Roentgenium }}{272}}^{271}$	$\begin{array}{\|c\|} \hline 285 \\ \mathrm{Cn}_{\text {Copernicium }}^{112} \\ \hline \end{array}$						

THE PERIODIC TABLE OF ELEMENTS

Group

