

 (Centr	e Nu	mber
Can	didat	e Nu	mber
Can	didat	e Nu	mber

General Certificate of Secondary Education 2018

Double Award Science: Chemistry

Unit C2

Foundation Tier

[GSD51] *GSD51*

WEDNESDAY 13 JUNE 2018, MORNING

TIME

1 hour 15 minutes.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number in the spaces provided at the top of this page.

You must answer the questions in the spaces provided.

Do not write outside the boxed area on each page or on blank pages.

Complete in black ink only. Do not write with a gel pen.

Answer all nine questions.

INFORMATION FOR CANDIDATES

The total mark for this paper is 90.

Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question.

Quality of written communication will be assessed in Question 6.

A Data Leaflet, which includes a Periodic Table of the Elements, is included in this question paper.

	Object			d of rust ention	
			Pa	inting	
	Nail				
			0	iling	
	Car bonnet				
			Galv	anising	
	Bicycle chain				
			Plastic	coating	12
(b)	Complete the definition	on of rusting using y	vords from the I	ist below	[3
()	water	magnesium	acid	zinc	
	hydrogen	air	iron	nitrogen	
	Rusting is the reaction	n of the metal		with	
					[3

Sy Learning
Rewarding
Sy Learning

Rewardin

Remarding
Sp Learning

Rewardin

Remarding
Sp. Learning

ng Learning
Rewarding
ng Learning

G.

	(c)	Rus	sting is an example of an o	oxidation reaction	n.	
		(i)	Two of the reactions belo Identify the two oxidation		ation reactions. itting ticks (✔) in the corre	ect boxes
			melting ice to give water			
			burning a fuel			
			reacting an acid with an a	alkali		
			turning carbon monoxide	(CO) into carbo	on dioxide (CO ₂)	
						[2]
		(ii)	Which element can be re Circle the correct answer		kidation reaction?	
			hydrogen	nitrogen	oxygen	[1]
	(d)	Des	scribe the test for oxygen o	gas.		
						[2]
11478						[Turn over

Rewarding L

Rewording L

Rowarding L

Rewarding L

Rewarding L

Rewarding L

Rewarding L

Rewarding L

Rewarding L

Learning

Rewarding L

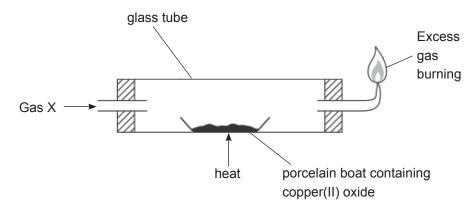
Rowarding L

Rewarding L

Rowarding L

Rowarding L

Rowarding L


Rowarding L

Rowarding L

Rowarding L

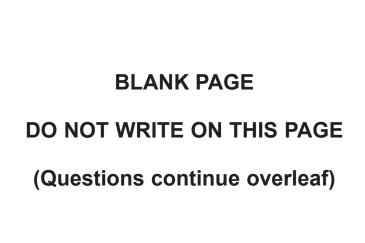
(e) Copper(II) oxide can be reduced using the apparatus shown below.

(i) Name the gas X used in this reduction reaction.

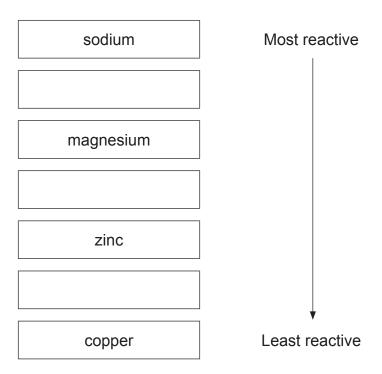
__ [1]

ag Learning

(ii) What is the colour of copper(II) oxide? Circle the correct answer.


blue black red/pink white [1]

(iii) During this reaction a colourless liquid may condense on the inside of the glass tube.


What is the name of this colourless liquid?

[1]

2 (a) Complete the reactivity series below by placing the metals aluminium, iron and calcium in their correct positions.

(b) Sodium reacts with water. In the table below tick (✓) **three** observations that can be made when sodium reacts with water.

Observation	Tick (✔)
sodium burns with a lilac flame.	
the reaction is very fast.	
a silver ball is formed.	
sodium sinks to the bottom and rises.	
sodium moves about the surface.	

[3]

[2]

sg Learning
Rowardin
Sg Learning

G:

)

PD ig Learning

)

E

G:

E

)

)

)

0

)

Rewarding 19 Learning

G:

1		
۱۰		
2		
3		
		[3]
chan	iges colour.	
1	from to	[2]
1	2 3 Whe chan	2

11478

Œ

Rewarding L

Rewarding L

Committee Com

Rewarding L

Rowarding Loaming

Rowarding Loaming

Rowarding Loaming

Rowarding Loaming

Rowarding Loaming

Rowarding Loaming

A Learning

GE Rewarding L

Rowarding L

Rewarding L

Rowarding L

Rowarding L

Rowarding L

Rowarding L

Rowarding L

(a)	Describe how you would ca soft.	rry out a test to show that a	sample of water wa
(b)	The table below contains so	umo statomonte about tomo	orany and normanon
(D)	The table below contains so hardness which may be true		
	Statement	Temporary hardness True or False?	Permanent hardn True or False?
	forms a scale in kettles	True	
	can be removed on boilin	g	
	is good for teeth and bone	es	True
(c)	(ii) Give two disadvantages area. 1.	which is present in hard water	om living in a hard w

ag Learning
Rewardin

Rowardin

Powerdin

Rowardin

Rowardin

Rowardin

Rowardin

Rowardin

Rowardin

Rowardin

Rowardin

Rewardin

Remarding
Sp Learning

Rewardin

Rewardin
Page Learning
Sig Learning

ag Learning
Rewarding

newardin

Rewardin

Rewardin 200 201 Learning

4 (a) Endothermic processes take in heat. Complete the table below to show if the processes are endothermic or not. The first one has been done for you.

Process	Endothermic Yes / No
photosynthesis	Yes
burning natural gas	
neutralising acid with alkali	
water turning into steam	

[3]

- (b) Calcium carbonate (limestone) can be broken down by heating.
 - (i) Complete the word equation to show the products formed when calcium carbonate is heated.

[2]

[1]

(ii) From the list below, circle the name given to this type of chemical reaction.

neutralisation electrolysis thermal decomposition oxidation

(c) This part of the question is about the uses of limestone. From the list below circle two uses of limestone.

neutralising acidity in soil making fireworks

making fertilisers making building materials

[2]

[Turn over

11478

Rowarding L

5	Thi	s qu	estion is about the e	lement sulfur and	its compounds.		
	Sul	fur is	s a poor conductor o	f heat.			
	(a)	List	three other physica	I properties of sulf	ur.		
		1					
		2					
	(b)		tart.		oiling tube causes a delete of the head		
			1				
			2				_ [2]
		(ii)	•	•	the reaction of iron a		₋ [2]
	(c)		lfur burns in oxygen				
		(i)	What colour is the f	lame when sulfur	burns in oxygen?		F41
		(ii)	Which one of the fo	· ·	st describes the smell	l of sulfur dioxi	_ [1] de?
			odourless	pungent	pleasant	sweet	[1]

ag Learning
Rewardin

Rowardin

Powerdin

Rowardin

Rowardin

Rowardin

Rowardin

Rowardin

Rowardin

Rowardin

Rowardin

Rewardin

Remarding
Sp Learning

Rewardin

Remarding
Towarding
Toward

Rewarding

10 January 1 Ja

newarding og Learning Rewarding

Rewardin 200 201 Learning

(d)	Acid	d rain is a major environmental issue worldwide.
	(i)	Coal burning power stations are one of the main sources of acid rain. Many of these power stations use chemical sprays in the chimneys to try to reduce or prevent acid rain pollution.
		How do these chemical sprays reduce or prevent acid rain?
		[2]
	(ii)	Describe two other methods of acid rain prevention.
		1
		2 [2]

11478

Œ

Rewarding L

Animolog L.

J. Learning

G. G.

Rowarding L.

G. G.

Rowarding L.

J. Learning

Rewarding L

Rowarding L

6	This question is about carbon dioxide and its role in global warming.
	Describe:
	 The physical properties of carbon dioxide The reaction of carbon dioxide with water and with limewater The role of carbon dioxide in global warming and the effects of global warming.
	In this question you will be assessed on your written communication skills including the use of specialist scientific terms.
	The physical properties of carbon dioxide
	The reaction of carbon dioxide with water and with limewater
11478	

ng Learning
Rewardin

Rowardin

Powerdin

Rowardin

Rowardin

Rowardin

Rowardin

Rowardin

Rowardin

Rowardin

Rowardin

Rewardin

Remarding
Sp Learning

Rewardin

Rewardin

Page 1 Learning

Page 2 Learning

Page 2 Learning

Page 3 Learning

Page 3 Learning

Page 3 Learning

Page 4 Learning

Page 5 Learning

Rewardin

Rewardin

Rewardin

Rewardin 200 201 Learning

The role of carbon dioxide in global warming and the effects of global warming	
	[6]
rm.	ırn over

Œ

Rewarding L

Annual Company

A Learning

Rewarding L

Rowarding L

A Learning

Rowarding L

7 This question is about relative formula masses, moles and relative atomic masses.

(a) Calculate the relative formula mass of each of the following substances.

(relative atomic masses: H = 1, C = 12, N = 14, O = 16, Na = 23, S = 32)

(i) methanoic acid HCOOH

_____[1]

(ii) sodium sulfite Na₂SO₃

_____[1]

(iii) ammonium carbonate $(NH_4)_2CO_3$

_____[1]

		ormula mass of				
(c)	Hydrated cop	per(II) sulfate, (CuSO ₄ .5H ₂ O, h	as a relative for	rmula mass of	25
	(i) How man	ny moles would	there be in 1 kg	of hydrated co	pper(II) sulfat	e?
	(ii) If all of th	e water was re	moved from hyd	drated copper(II) sulfate, wha	t wo
			moved from hyd s be? Circle the			t w
						t wo
	the relativ	ve formula mas	s be? Circle the	e correct answe	er.	t wc
	the relativ	ve formula mas	s be? Circle the	e correct answe	er.	t wo
	the relativ	ve formula mas	s be? Circle the	e correct answe	er.	t wo

11478

Œ

Rewerding L

Learning Learning

GE Rewarding L

Jeaming

GE
Rewarding L

GE
Rewarding L

Rewarding L

Rewarding L

GE

Rewarding L

GE

Rewarding L

Rewarding L

Learning Learning

Rewarding L

Learning

Rewarding L

Company

Rewarding L

Rewarding L

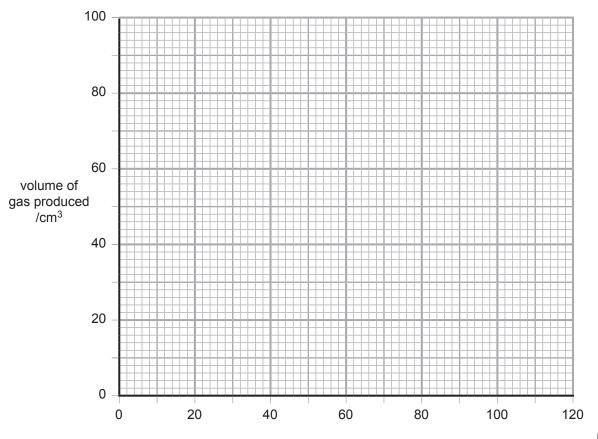
Rewarding L

GE
Rewarding L

Rowarding L

Rewording L

Rowarding L.


- 8 The rate of the reaction between calcium carbonate and hydrochloric acid can be studied by recording the volume of gas produced at different times.
 - (a) Complete and balance the symbol equation below:

$$CaCO_3$$
 + $HCI \rightarrow$ + + [2]

(b) A group of students, investigating the rate at which gas was produced, obtained the following results:

Time /s	0	10	20	40	60	80	100	120
Volume of gas produced /cm ³	0	22	39	62	79	88	92	92

On the grid below, label the x-axis and plot a graph to show how the volume of gas produced changes with time.

[4]

(-)	(i)	Why was the volume of gas produced after 120 seconds the same as the volume produced after 100 seconds?									
		[
	(ii)	What volume of gas was produced between 40 seconds and 50 seconds?									
(d)		inging the conditions of the reaction between calcium carbonate and rochloric acid may affect the rate of the reaction.									
		each of the situations below state if the rate would increase, decrease or the same.									
	(i)	using powdered calcium carbonate instead of lumps									
		[
	(ii)	cooling down the hydrochloric acid before adding it to the calcium carbonate									
	(iii)	diluting the hydrochloric acid with water before adding it to the calcium carbonate.									

Œ

Rewarding L

Rewarding L

Committee Com

Rewarding L

Rowarding Loaming

Rowarding Loaming

Rowarding Loaming

Rowarding Loaming

Rowarding Loaming

Rowarding Loaming

A Learning

GE Rewarding L

Rowarding L

9	Thio	uuaatian id	a bout	orudo	ما ممط	organia	aamnaunda
J	11115 (<u>เนษอแบบ เ</u>	about	Cluuc	uli allu	Ulyanic	compounds.

(a) Crude oil is a mixture of different hydrocarbons.

What is meant by the term hydrocarbon?

_____[

(b) During the process of fractional distillation, crude oil enters the bottom of a fractionating column as a hot gaseous mixture.

Explain **how** and **why** the hydrocarbons in crude oil separate into different fractions, such as petrol and diesel oil.

(c) Complete the table below by filling in the blank spaces.

Name	Molecular formula	Structural formula	Physical state at room temperature
ethene	C_2H_4		
		H H H	gas

[4]

20

0

)

)

)

Rewardin

)

ng Learning

Control

Rowardin

)

)

)

9

Rewardin DD

Rewardin Pag 1g Learning

6

(d)	plas	ythene and polyvinyl chloride (PVC) are two of the world's most important stics. They are both long chain molecules which are made up of lots of aller molecules (monomers) chemically joined together.	
	(i)	Name the monomer used to make polythene.	
			[1]
	(ii)	What name is given to the type of reaction used to make polythene?	
			[2]
(e)		anoic acid is found in vinegar and it will react with some metals such as gnesium.	
		scribe two things that you would observe happening when some magnesiunded to a beaker containing ethanoic acid.	n
	1		
	2		[2]

THIS IS THE END OF THE QUESTION PAPER

11478

Rewarding L

Rewarding L

Rewarding L

Rewarding L

Rewarding L

Rewarding L

Laarning

Rewarding L

Rowarding L

Rewarding L

Company

Rewarding L

Company

Rewarding L

Rewarding L

GE Rewarding L

Rowarding L

Rewarding L

DO NOT WRITE ON THIS PAGE

For Examiner's use only								
Question Number	Marks							
1								
2								
3								
4								
5								
6								
7								
8								
9								

Ag Learning
Rowarding
Ag Learning
Rowarding
Rowarding

ng Learning

Rewardin

)

Rowarding

Page Learning

Rowarding

E

ng Learning
Rewarding
ng Learning

DE ng Learning

Rowarding

Rowarding

Rowarding

Rowarding

Rowarding

)

G.

ng Learning

Rewards

ng Learnina

Rewarding ag Learning

Rewardin

G:

Total Marks

Examiner Number

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright holders may have been unsuccessful and CCEA will be happy to rectify any omissions of acknowledgement in future if notified.

SYMBOLS OF SELECTED IONS

Positive ions

Name	Symbol
Ammonium	NH ₄
Chromium(III)	Cr ³⁺
Copper(II)	Cu ²⁺
Iron(II)	Fe ²⁺
Iron(III)	Fe ³⁺
Lead(II)	Pb ²⁺
Silver	Ag ⁺
Zinc	Zn ²⁺

Negative ions

Symbol
CO ₃ ²⁻
Cr ₂ O ₇ ²⁻
CH₃COO¯
HCO₃
OH⁻
HCOO ⁻
NO ₃
SO ₄ ²⁻
SO ₃ ²⁻

SOLUBILITY IN COLD WATER OF COMMON SALTS, HYDROXIDES AND OXIDES

Soluble
All sodium, potassium and ammonium salts
All nitrates
Most chlorides, bromides and iodides EXCEPT silver and lead chlorides, bromides and iodides
Most sulfates EXCEPT lead and barium sulfates Calcium sulfate is slightly soluble

	Insoluble
EXCEPT	rbonates , potassium and ammonium carbonates
EXCEPT	vdroxides , potassium and ammonium hydroxides
Most ox EXCEPT sodium,	

DATA LEAFLET

For the use of candidates taking Science: Chemistry, Science: Double Award or Science: Single Award

Copies must be free from notes or additions of any kind. No other type of data booklet or information sheet is authorised for use in the examinations.

Contents	Page
Periodic Table of the Elements	2–3
Symbols of Selected Ions	4
Solubility of Common Salts	4

gcse. SC1C1CC

chemistry double award single award

Rewarding Learning

THE PERIODIC TABLE OF ELEMENTS Group

H Hydrogen

•							1					J	_	•	O		2 Helium
7	9]										11	12	14	16	19	20
Li	Be											B		N	0	F	Ne
Lithium 3	Beryllium 4											Boron 5	Carbon 6	Nitrogen 7	Oxygen 8	Fluorine 9	Neon 10
23	24										1	27	28	31	32	35.5	40
Na	Mg											Al	Si	P	S		Ar
Sodium 11	Magnesium 12											Aluminium 13	Silicon 14	Phosphorus 15	Sulfur 16	Chlorine 17	Argon 18
39	40	45	48	51	52	55	56	59	59	64	65	70	73	75	79	80	84
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Potassium 19	Calcium 20	Scandium 21	Titanium 22	Vanadium 23	Chromium 24	Manganese 25	Iron 26	Cobalt 27	Nickel 28	Copper 29	Zinc 30	Gallium 31	Germanium 32	Arsenic 33	Selenium 34	Bromine 35	Krypton 36
85	88	89	91	93	96	99	101	103	106	108	112	115	119	122	128	127	131
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	l In	Sn	Sb	Te		Xe
Rubidium 37	Strontium 38	Yttrium 39	Zirconium 40	Niobium 41	Molybdenum 42	Technetium 43		Rhodium 45	Palladium 46	Silver 47	Cadmium 48	Indium 49	Tin 50	Antimony 51	Tellurium 52	lodine 53	Xenon 54
133	137	139	178	181	184	186	190	192	195	197	201	204	207	209		210	222
Cs	Ba	La*	Hf	Ta	W	Re	Os	l Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
Caesium	Barium	Lanthanum	■ ■ ■ Hafnium	Tantalum	Tungsten	Rhenium	Osmium	■ ■ Iridium	Platinum	Gold	Mercury	■ ■ Thallium	Lead	Bismuth	Polonium	Astatine	Radon
55	56	57	72	73	74		76	77	78	79	80	81	82	83		85	86
223	226	227	261	262	263	262	265	266	269	272	285						
Fr	Ra	$ Ac^{\scriptscriptstyle \dagger}$	Rf	Db	Sq	Bh	Hs	Mt	Ds	Rg	Cn						
Francium	Radium	Actinium	Rutherfordium	Dubnium	Seaborgium	Bohrium	Hassium		Darmstadtium	Roentgenium	Copernicium 112						
87	88	89	104	105	106	107	108	109	110	111	112]					

* 58 – 71 Lanthanum series † 90 – 103 Actinium series

a = relative atomic mass b x | (approx)

x = atomic symbol b = atomic number

	140	141	144	147	150	152	157	159	162	165	167	169	173	175
	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dv	Но	Er	Tm	Yb	Lu
	Cerium 58	1 '	′	Promethium		Europium	Gadolinium	Terbium 65	Dysprosium 66	Holmium	Erbium 68	Thulium 69	Ytterbium 70	Lutetium 71
;	232 Th	231 D a	238 I I	237 N p	242 D 11	²⁴³ Am	²⁴⁷ Cm	245 Bk	251 C f	254 E C	²⁵³ Fm	256 Md	254 N O	257 • •
	Thorium 90	Protactinium 91		Neptunium		Americium	Curium	Berkelium	1	Einsteinium 99		Mendelevium	Nobelium 102	Lawrencium 103