

Centre Number						
	Can	didat	e Nu	mber		

General Certificate of Secondary Education 2017–2018

Double Award Science: Physics

Unit P1 Higher Tier

[GSD32]

GSD32

WEDNESDAY 23 MAY 2018, AFTERNOON

TIME

1 hour.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number in the spaces provided at the top of this page.

You must answer the questions in the spaces provided.

Do not write outside the boxed area on each page or on blank pages.

Complete in black ink only. Do not write with a gel pen.

Answer **all eight** questions.

INFORMATION FOR CANDIDATES

The total mark for this paper is 70.

Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question.

Quality of written communication will be assessed in Questions 1 and 7.

11523.05**R**

16GSD3201

1	Describe	the	structure	of	the	atom.
---	----------	-----	-----------	----	-----	-------

In your answer state:

11523.05**R**

- the names of the particles which make up the atom;
- where these particles are located.

In this question you will be assessed on your communication skills including the use of specialist scientific terms.

_ [6]

|--|

16GSD3202

Resarch 200 J Learning a 20 7 Learning 2D a Ð a 20 J Learning a 2D C 20 CC. D C D Revertin 20 7 Learning CC. 20 J Loaming Ð 20 a 20 J Learning a Ð CC. 20 a D a Ð a Ð a 2D CC. 20 J Learning 20 7 Learning CC. D

D

BLANK PAGE

DO NOT WRITE ON THIS PAGE

(Questions continue overleaf)

11523.05**R**

[Turn over

16GSD3203

16GSD3204

D

Leeming

3

16GSD3205

3 The electrical resistance of a piece of metal wire changes with temperature. It is suggested that the resistance of the wire is directly proportional to its temperature in °C.

This relationship could be written in the form:

R = kt Equation 3.1

where R is the resistance in ohms, t is the temperature in $^{\circ}C$ and k is a constant. To test this, the resistance of the wire is found at different temperatures.

The results are recorded below.

t/°C	100	200	300	400	500
R/ohms	100	125	150	175	200

16GSD3206

(iii)	Draw the line of best fit and continue the line until it cuts the vertical axis.	[1]
(iv)	Use the graph to find the resistance of the wire at 0 °C.	
	You are advised to show how you get your answer.	
	Resistance = ohms	[2]
(V)	Does your graph confirm the theory described by Equation 3.1 ?	
	Yes / No Circle your choice.	
	Explain your answer.	[1]
		[1]
(vi)	Find the gradient of your graph and include the unit.	
	You are advised to show your working out.	
	Gradient =	
	Unit =	[3]
	[Tur	n over
11523.05 R		

16GSD3207

4 The forward thrust exerted on a car by its engine is 2900 N and this results in an acceleration of 1.5 m/s². The car has a mass of 1500 kg. © EgudinKa / iStock / Thinkstock (a) Calculate the frictional force acting on the car. You are advised to show your working out. Frictional force = ____ _N [4] 11523.05**R**

16GSD3208

Resarch 200 J Learning G 20 7 Learning C Ð a Ð a 20 JLeaming a Ð G Ð a Ð a Ð a Ð G D C Ð Rowardin 2D a 2D a Ð Ð a D a Ð a Ð a 2D C 200 CC. 200 y Learning CC. Ð

D

At one stage in the journey the car is travelling at a constant speed of 15 m/s and then the brakes are applied. This reduces the kinetic energy of the car.

(b) (i) Calculate the amount of work done by the braking forces in bringing the car to a stop.
 Remember the mass of the car is 1500 kg.

Assume no energy losses.

You are advised to show your working out.

Work done = _____ J [3]

(ii) Express your answer to (b)(i) in kilojoules.

______kJ [1]

11523.05**R**

2

[Turn over

16GSD3209

5	The	e lett	ers A, B and C below	represent three nucle	i.	
			¹³ ₆ A	¹⁴ ₆ B	¹⁴ ₇ C	
	(a)	(i)	Explain what an isot	ope is.		
						[2]
		(ii)	Which, if any, of the	above nuclei are isoto	pes?	
			Answer:			[1]
	(b)			types of radiation emitt w to show the propertie Alpha	ed by radioactive mate es of these radiations. Beta	rials.
			Charge compared with a proton			
			Mass compared with a proton		<u>1</u> 1840	
		L				[3]
11523.0	5 R					

L

(c)	The activity of a sample of wood is 1600 counts per second.
	The half-life of the radioactive isotope in the wood is 10 days.

Calculate the **decrease** in activity after 30 days.

You are advised to show your working out.

Decrease in activity = _____ counts per second [3]

11523.05**R**

[Turn over

16GSD3211

16GSD3212

When an object moves in a circle, a force, called the centripetal force, acts towards the centre.
In your account below:
 give three variables that the centripetal force depends on; state how the centripetal force depends on each variable.
In this question you will be assessed on your communication skills including the use of specialist scientific terms.
Variable 1
How force changes as this variable increases .
Variable 2
How force changes as this variable increases .
Variable 3
How force changes as this variable increases .

8 Th	ie uni	iform lever shown is balanced.
		40 cm
		36 N 30 cm
(a)) (i)	State the direction of the moment exerted by the 36 N load about the pivot. [1]
		e weight acts at the centre of gravity of the lever which is 120 cm long. Draw an arrow on the diagram, beginning from the correct point, to represent the weight of the lever. Label this point X. [1]
	(iii)	State the distance between the point X and the pivot.
		Distance = cm
		The load of 36 N keeps the lever balanced. Use the distance to calculate the weight of the lever.
		You are advised to show your working out.
		Weight = N [5]

16GSD3214

The string holding the 36 N (3.6 kg) load snaps, the load falls and hits the ground 0.5 seconds later. Its momentum **at impact** is 16.2 kg m/s.

(b) By first finding its velocity at impact, **show that** the acceleration of the falling load is 9 m/s².

Velocity = _____ m/s

[5]

THIS IS THE END OF THE QUESTION PAPER

11523.05**R**

DO NOT WRITE ON THIS PAGE

	For Examiner's use only			
Question Number	Marks			
1				
2				
3				
4				
5				
6				
7				
8				
Total Marks				

Examiner Number

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright holders may have been unsuccessful and CCEA will be happy to rectify any omissions of acknowledgement in future if notified.

11523.05**R**

16GSD3216