Pearson Edexcel

Mark Scheme FINAL

Summer 2019

Pearson Edexcel International GCSE in Chemistry (4CH1)
Paper 2C

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2019
Publications Code 4CH1_2C_msc_20190822
All the material in this publication is copyright
© Pearson Education Ltd 2019

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Question number	Answer	Additional guidance	Marks
1 (a)		1 mark for each correct answer	3
(b)	13		1
(c)	M1 protons M2 neutrons	I GNORE electrons	2
		Total	6

(c)	An explanation that links together the following four points: M1 add chlorine (solution) to potassium bromide (solution) M2 (solution) turns orange M3 bromine/ Br_{2} is displaced M4 (therefore) chlorine is more reactive (than bromine)	ACCEPT mix the two solutions ALLOW any combination of orange/yellow/brown I GNORE other observations eg bubbles ALLOW bromine/ Br_{2} is produced/formed I GNORE state of bromine REJ ECT bromide I GNORE a displacement reaction occurs M3 can be scored by Br_{2} as a product in an equation ACCEPT reverse argument "If a reaction occurs then chlorine is more reactive than bromine" scores M4	4
		Total	9

\begin{tabular}{|c|c|c|c|}
\hline Question number \& Answer \& Additional guidance \& Marks \\
\hline 3 (a) \& \begin{tabular}{l}
M1 the volume of liquid/alcohol \\
M2 the temperature of the water
\end{tabular} \& \begin{tabular}{l}
ALLOW amount of liquid/alcohol IGNORE mass IGNORE volume of water \\
ALLOW temperature of surroundings \\
I GNORE references to temperature of the alcohol
\end{tabular} \& 2 \\
\hline (b) \& alcohols/the liquids are flammable/catch fire easily \& ALLOW alcohols/the liquids can be easily ignited ALLOW any named alcohol from the table \& 1 \\
\hline \begin{tabular}{l}
(c) \\
(i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
M1 \((64+63+60) \div 3\)
\[
\text { M2 }=62
\] \\
An explanation including the following two points: \\
M1 methanol/ \(\mathrm{CH}_{3} \mathrm{OH}\) (evaporates most easily) \\
M2 because the time taken is the shortest
\end{tabular} \& \begin{tabular}{l}
ALLOW 62.3 \\
62/62.3 with no working scores 2 \\
ALLOW 69/69.25/69.3 for 1 mark \\
ACCEPT because has lowest (mean) time
\end{tabular} \& 2

2

\hline
\end{tabular}

Question Number	Answer	Additional Guidance	Marks
(iii)	M1 as the number of carbon atoms increases M2 the ease of evaporation decreases/the less easily the alcohol evaporates	ALLOW the less volatile the alcohol I GNORE the slower the alcohol evaporates I GNORE references to time taken ALLOW correct reverse argument	2
		Total	9

Question number	Answer	Additional guidance	Marks
4 (a)	C (electrostatic attraction between positively charged particles and delocalised electrons) is correct as it describes metallic bonding A is incorrect since it describes ionic bonding not metallic bonding B is incorrect since it describes covalent bonding not metallic bonding D is incorrect since it describes interatomic or intermolecular forces not metallic bonding	1	
(b)	Any two from the following: M1 good conductor of heat/thermal energy M2 does not react with food/affect flavour of food M3 resistant to corrosion M4 high melting point M5 low density/lightweight/strong	IGNORE non-toxic	ALLOW does not corrode/rust

Question number	Answer	Additional guidance	Marks
4 (c) (i)	a mixture of (two or more) elements, one of which is a metal	ACCEPT a mixture of (two or more) metals ALLOW combination for mixture REJ ECT compound or references to chemical bonding	1
(ii)	An explanation that links together the following three points:		
	M1 the regular arrangement of atoms is distorted/disrupted OWTTE	ALLOW lattice/layers/rows of atoms are disrupted/distorted ALLOW lattice/layers/rows of atoms less regular	3
	M2 because magnesium atoms are larger than aluminium atoms	ALLOW magnesium and aluminium atoms are of different sizes	
	M3 and therefore it is more difficult for the layers to slide over one another	ALLOW layers cannot (as easily) slide over one another	
		I GNORE references to strength of metallic bonds	
		Total	7

Question number	Answer	Additional guidance	Marks
5 (a) (i) (ii) (iii)	(bonds broken) 3861 (kJ) (bonds made) 4649 (kJ) M1 subtraction of Σ (bonds made) made and Σ (bonds broken) M2 correct evaluation of the calculation shown in M1 M3 If Σ (bonds made) $>\Sigma$ (bonds broken) final answer must be negative If Σ (bonds made) $<\Sigma$ (bonds broken) final answer must be positive (and + sign given)	In (iii) ECF from (i) and (ii) must be applied Subtraction can be in any order IGNORE sign Expected final answer is -788 (kJ/mol) -788 with no working scores 3 (+) 788 scores 2	1 1 1 3

Question number	Answer	Additional guidance	Marks
5 (c)	 M1 right hand line below left hand line M2 correct names/formulae of both reactants M3 correct names/formulae of both products	IGNORE horizontal axis drawn IGNORE enthalpy change shown I GNORE activation energy shown If only use words reactants (on left) and products (on right) award 1 mark from M2 and M3	3
		Total	10

Question number	Answer	Additional guidance	Marks
6 (a) (i)	yeast	I GNORE zymase	1
(ii)	C $\left(30^{\circ} \mathrm{C}\right)$ is correct as it is the most		1
	A is incorrect as at $0^{\circ} \mathrm{C}$ the enzymes would not be active so not the most suitable temperature for fermentation		
	B is incorrect as at $10^{\circ} \mathrm{C}$ the enzymes would not be very active so not the most suitable temperature for fermentation		
	D is incorrect as at $80^{\circ} \mathrm{C}$ the enzymes would be denatured so not the most suitable temperature for fermentation		
(iii)	An explanation using either of the following linked pairs:		
	M1 oxygen in the air would react with ethanol	ACCEPT ethanol would be oxidised	2
	M2 to form ethanoic acid	ALLOW to form carboxylic acid ALLOW to form vinegar	
	OR		
	M1 the fermentation/reaction/respiration needs to be anaerobic		
	M2 ethanol would not be formed $/ \mathrm{CO}_{2}$ and $\mathrm{H}_{2} \mathrm{O}$ would form		

(b) (i)	a substance that releases thermal energy/heat (energy) when burned/combusted	IGNORE energy on its own			
(ii)	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}$ $\mathbf{M 1}$ all formulae correct $\mathbf{M 2}$ correctly balanced	ACCEPT multiples	$	$	M2 DEP M1
:---					

Question number	Answer	Additional guidance	Marks
6 (c)	M1 (temperature) $300^{\circ} \mathrm{C}$ M2 60-70 atm	ACCEPT any value or range of values between 250 and $350^{\circ} \mathrm{C}$ If no unit given assume it is Celsius ACCEPT equivalent temperatures in other units provided the unit is given ACCEPT any value or range of values between 60 and 70 atm If no unit given assume it is atm ACCEPT equivalent pressures in other units provided the unit is given	2
(d) (i) (ii) (iii)	(from) orange (to) green $\mathrm{CH}_{3} \mathrm{COONa}+1 / 2 \mathrm{H}_{2}$ M1 for both products correct M2 for correctly balanced	IGNORE bond angles scores 1 mark ALLOW $\mathrm{NaCH}_{3} \mathrm{COO}$ ACCEPT multiples M2 DEP M1	1 2 2
		Total	14

Question number	Answer	Additional guidance	Marks
7 (a)	An explanation that links together the following two points: M1 reaction is taking place in both directions (at same time) M2 at equal rate	ACCEPT both forward and backward reactions are taking place (at same time) IGNORE it is a reversible reaction M2 DEP M1 rate of the forward reaction is equal to the rate of the backward reaction scores 2 marks REJ ECT both forward and backward reactions occur at constant rate for M2 ALLOW the concentrations of the reactants and products remains constant scores 1 mark independently of M1 but REJ ECT concentrations of the reactants and products are equal/the same	2

(b) (i)	An explanation that links together the following two points: M1 (the position of) equilibrium has moved to the left	ALLOW (position of) equilibrium has shifted in backwards direction ALLOW (position of) equilibrium has shifted towards the $\mathrm{N}_{2} \mathrm{O}_{4}$ /reactants (side) ALLOW increasing pressure shifts (position of) equilibrium in direction that produces fewer moles (of gas) I GNORE references to Le Chatelier's Principle eg increasing pressure favours the side that has fewer moles of gas / increasing pressure favours the backwards reaction	2
	M2 because there are fewer moles/molecules (of gas) on the left	ALLOW particles REJECT atoms ALLOW because there are fewer moles of $\mathrm{N}_{2} \mathrm{O}_{4}$ (than NO_{2}) ALLOW because there are fewer moles of reactant (than product) ACCEPT reverse argument	
(ii)	the concentration of NO_{2} has increased	ALLOW molecules/particles of NO_{2} are closer together ALLOW molecules/particles of NO_{2} are in a smaller volume REJ ECT more NO_{2} produced	1

Question number	Answer	Additional guidance	Marks
7 (c) (i)	nitrogen/ N_{2} reacts with oxygen/ O_{2} (both from the air)	IGNORE nitrogen burns/combusts in oxygen IGNORE nitrogen is oxidised	1
(they form) acid rain	ACCEPT references to respiratory problems ALLOW a specified harmful effect of acid rain	1	
ALLOW references to smog			
ALLOW references to greenhouse			
gases/global warming/climate			
change			
(iii)	$2 \mathrm{NO}+2 \mathrm{CO} \rightarrow \mathrm{N}_{2}+2 \mathrm{CO}_{2}$	ACCEPT multiples and fractions	1

\begin{tabular}{|c|c|c|c|}
\hline Question number \& Answer \& Additional guidance \& Marks \\
\hline 8 (a) \& \begin{tabular}{l}
An explanation using either of the following linked pairs: \\
M1 use a fume cupboard \\
M2 because chlorine is toxic/poisonous \\
OR \\
M1 wear goggles/safety glasses/gloves \\
M2 because acid/bleach (may be) irritant/corrosive
\end{tabular} \& \begin{tabular}{l}
IGNORE chlorine is dangerous/harmful/irritant \\
I GNORE laboratory coats
\end{tabular} \& 2 \\
\hline \begin{tabular}{l}
(b) (i) \\
(ii) \\
(iii) \\
M2 0.625
\end{tabular} \& \begin{tabular}{l}
M1 \(60 \div 24000\) \\
M2 0.0025 (mol) \\
0.0025 OR answer to M2 from (i) \\
M1 \((0.0025 \div 4.00) \times 1000\) \\
mol/ \(\mathrm{dm}^{3}\)) \\
ACCEPT any
\end{tabular} \& \begin{tabular}{l}
0.0025 with no working scores 2 marks REJ ECT 0.003 for M2 \\
Mark CSQ on (b)(ii) \\
number of sig fig except 1 \\
(unless ECF answer is exactly 1 sig fig \\
correct answer with no working throughout (b) scores 2 marks
\end{tabular} \& 2

1
2

\hline \& \& Total \& 7

\hline
\end{tabular}

