General Certificate of Secondary Education
2019

GCSE Chemistry

Unit 1

Foundation Tier

[GCM11]

TUESDAY 28 MAY, AFTERNOON

TIME

1 hour.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number in the spaces provided at the top of this page.
You must answer the questions in the spaces provided.
Do not write outside the boxed area on each page or on blank pages.
Complete in black ink only. Do not write with a gel pen.
Answer all five questions.

INFORMATION FOR CANDIDATES

The total mark for this paper is 60 .
Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question.
Quality of written communication will be assessed in Question 5(a).
A Data Leaflet, which includes a Periodic Table of the Elements, is included in this question paper.

1 The element sulfur is found on the Earth's surface particularly in volcanic regions such as Sicily. The atomic number of sulfur is 16.
(a) (i) What is meant by the term element?
\qquad
\qquad
(ii) What is meant by the term atomic number?
\qquad
(b) A sample of sulfur from a volcanic rock was analysed to give the following percentage abundance of its isotopes.

Isotope	Percentage abundance
${ }^{32} \mathrm{~S}$	95.02
${ }^{33} \mathrm{~S}$	0.76
${ }^{34} \mathrm{~S}$	4.22

(i) Calculate the relative atomic mass for the sample of sulfur. Show your working out.

Relative atomic mass =
(ii) What is meant by the term isotopes?
\qquad
\qquad
(c) Complete the table below.

Atom/ion	Number of protons	Number of neutrons	Number of electrons
${ }^{32} \mathrm{~S}$			
${ }^{34} \mathrm{~S}^{2-}$			

2 The elements of Period 2 are listed below.

lithium	beryllium	boron	carbon	nitrogen	oxygen	fluorine
neon						

(a) Lithium burns in air to form lithium oxide.
(i) Write a balanced symbol equation for the reaction which occurs when lithium burns in air.
\qquad
(ii) Describe, in words and by writing electronic configurations, how lithium atoms react with oxygen atoms to form lithium oxide. State the charges of the ions formed.
\qquad

(iii) Explain why lithium oxide conducts electricity when molten.
\qquad
\qquad
(b) Carbon reacts with oxygen to form carbon dioxide.
(i) Write a balanced symbol equation for this reaction.
\qquad
(ii) The dot and cross diagram for the bonding in carbon dioxide is shown below. Label one lone pair of electrons in the diagram.

(c) The diagram below shows the bonding in lithium metal.

What labels should be placed at A and B?
A \qquad
B

3 Chlorine and hydrated aluminium sulfate, $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot \mathrm{XH}_{2} \mathrm{O}$, are both used in water treatment to make fresh water potable.
(a) (i) What is potable water?
\qquad
(ii) Why is chlorine used in water treatment?
\qquad
(iii) Describe the test for chlorine gas.
\qquad
\qquad
\qquad
(iv) Why is aluminium sulfate used in water treatment?
\qquad
(b) The following method may be used to prepare hydrated aluminium sulfate.

- Measure out $25 \mathrm{~cm}^{3}$ of dilute sulfuric acid into a beaker
- Warm the acid and add spatula measures of aluminium oxide until it is in excess
- Remove the excess aluminium oxide by filtration
- Slowly evaporate the aluminium sulfate solution
(i) What piece of apparatus is used to measure out $25 \mathrm{~cm}^{3}$ of dilute sulfuric acid?
\qquad
(ii) Draw a labelled diagram of the assembled apparatus used for the filtration step.
(iii) Complete the balanced symbol equation for the reaction by adding the correct state symbols.

$$
\mathrm{Al}_{2} \mathrm{O}_{3}(\quad)+3 \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \longrightarrow \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}(\quad)+3 \mathrm{H}_{2} \mathrm{O}(\quad)
$$

(c) In an experiment, 12.60 g of hydrated aluminium sulfate crystals, $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot \mathrm{xH}_{2} \mathrm{O}$, were heated to constant mass. The anhydrous aluminium sulfate formed had a mass of 6.84 g .
(i) Calculate the mass of water removed on heating to constant mass.
mass of water $=$ \qquad g [1]
(ii) Calculate the number of moles of water removed on heating to constant mass.
moles of water $=$
(iii) Draw a labelled diagram of the assembled apparatus used to heat the hydrated aluminium sulfate crystals to constant mass.
(iv) Hydrated aluminium sulfate has the formula $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot 16 \mathrm{H}_{2} \mathrm{O}$. Calculate the relative formula mass $\left(M_{r}\right)$ of hydrated aluminium sulfate.
relative formula mass $\left(M_{r}\right)=$

4 When experimenting with manganese(IV) oxide and compounds of the elements yttrium and indium, scientists accidentally discovered a new blue pigment. The new blue colour was named 'YInMn blue' after the elements it contained. It is being used as a new colour for crayons.
(a) Name the block of elements in the Periodic Table which form coloured compounds.
\qquad
(b) Complete the table below to give the colour of some substances.

Substance	Colour
copper(II) oxide powder	
copper(II) nitrate solution	
calcium chloride solution	

(c) A student used chromatography to analyse a coloured pigment. The student set up the apparatus as shown in the diagram below. A is a coloured pigment and B, C and D are spots of pure dyes.

The student made an error in setting up the experiment. Identify the error and state the effect it would have.

Error \qquad

Effect \qquad
\qquad
(d) A different student set up the same experiment correctly and obtained the results shown in the chromatogram below.

(i) What do the results tell you about the composition of the coloured pigment A ?
\qquad
\qquad
(ii) Using a ruler, take the following measurements from the chromatogram and use them to calculate an R_{f} value for the spot at C :

Distance moved by spot C
\qquad
Distance moved by solvent front
\qquad
R_{f} value for spot C
R_{f} value $=$
(iii) Which pure dye $(B, C$ or $D)$ is least soluble in the solvent? Explain your answer.
\qquad
\qquad
\qquad

5 (a) An investigation was carried out into the displacement reactions of the halogens. Bromine was added to a test tube containing sodium iodide solution and in a separate test tube chlorine was added to sodium bromide solution. A reaction occurred in both test tubes.

State and explain what the student found out. In your answer you should include:

- word equations for the chemical reactions
- an order of reactivity, from most reactive to least reactive, of the halogens shown by these reactions
- an explanation of the order of reactivity of the halogens in terms of electronic configuration.

In this question you will be assessed on your written communication skills including the use of specialist scientific terms.
\qquad
(b) Some analytical tests were carried out to identify the ions present in several compounds. Write the name of the anion or cation present based on the results of the analytical tests given below.
(i) A white precipitate is produced on adding a few drops of barium chloride solution to a salt solution.
\qquad
(ii) On adding dilute nitric acid to the solid salt, a gas is produced which changes colourless limewater to milky.
\qquad
(iii) A flame test was carried out on a solid salt and a lilac flame was observed.

THIS IS THE END OF THE QUESTION PAPER

DO NOT WRITE ON THIS PAGE

For Examiner's use only	
uestion Number Marks	
1	
2	
3	
4	
5	

Total Marks

Examiner Number

\qquad

Permission to reproduce all copyright material has been applied for.
In some cases, efforts to contact copyright holders may have been unsuccessful and CCEA will be happy to rectify any omissions of acknowledgement in future if notified.

Negative ions

Name	Symbol
Ammonium	NH_{4}^{+}
Chromium(III)	Cr^{3+}
Copper(II)	Cu^{2+}
Iron(II)	Fe^{2+}
Iron(III)	Fe^{3+}
Lead(II)	Pb^{2+}
Silver	Ag^{+}
Zinc	Zn^{2+}

Name	Symbol
Butanoate	$\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{COO}^{-}$
Carbonate	CO_{3}^{2-}
Dichromate	$\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$
Ethanoate	$\mathrm{CH}_{3} \mathrm{COO}^{-}$
Hydrogencarbonate	HCO_{3}^{-}
Hydroxide	OH^{-}
Methanoate	HCOO^{-}
Nitrate	NO_{3}^{-}
Propanoate	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COO}^{-}$
Sulfate	SO_{4}^{2-}
Sulfite	SO_{3}^{2-}

SOLUBILITY IN COLD WATER OF COMMON SALTS, HYDROXIDES AND OXIDES

Soluble

All sodium, potassium and ammonium salts
All nitrates
Most chlorides, bromides and iodides
EXCEPT silver and lead chlorides, bromides and iodides
Most sulfates EXCEPT lead and barium sulfates
Calcium sulfate is slightly soluble

Insoluble

Most carbonates
EXCEPT sodium, potassium and ammonium carbonates

Most hydroxides
EXCEPT sodium, potassium and ammonium hydroxides
Most oxides
EXCEPT sodium, potassium and calcium oxides which react with water

© CCEA 2017

COUNCIL FOR THE CURRICULUM, EXAMINATIONS AND ASSESSMENT
29 Clarendon Road, Clarendon Dock, Belfast BT1 3BG
Tel: +44 (0)289026 1200 Fax: +44 (0)289026 1234
Email: info@ccea.org.uk Web: www.ccea.org.uk

For first teaching from September 2017

THE PERIODIC TABLE OF ELEMENTS
Group

						${ }_{\substack{1 \\ \text { yturesen }}}^{\mathbf{H}}$						4	5	6		${ }^{4} \mathrm{He}$
Li	${ }_{\substack{\text { Benmen }}}$										${ }^{11}$ B	${ }_{\text {coun }}^{12}$	${ }^{14} \mathbf{N}$	${ }^{16} \mathbf{0}$	${ }^{19} \mathrm{~F}$	${ }^{\text {20 }}$
Na	Mg										Al	${ }_{\text {seon }}^{\text {em }}$	'p	S	$\mathrm{Cl}^{\text {Clame }}$	${ }_{\text {Ar }}$
K	Ca		${ }^{5} \mathbf{V}$	${ }^{52} \mathrm{Cr}$	Mn	Fe^{6}	Co	Ni	${ }_{\text {coper }}^{64}$	${ }_{30}^{65} \mathbf{Z n}$	Ga	Ge	As	Se	Br	Kr
Rb	${ }_{\substack{\text { sin } \\ \text { sinum }}}^{\text {Sr }}$	${ }^{89}{ }^{89}{ }^{\text {Y }}$	Nb	Mo	Tc	Ru	Rh	Pd	Ag_{4}	Cd	In	${ }_{50} \mathbf{S n}$	Sb	Te	${ }^{\text {dane }}$	Xe
Cs	Ba	La* Hf	Ta	W	Re	Os	$\stackrel{92}{\text { lir }}$	Pt	Au	Hg	\int_{81}^{20404}		Bi	Po	At	Rn
${ }_{8}^{238}$			Db	${ }^{266}$	${ }^{264}$		${ }^{2688}$	Ds	$\mathrm{Rg}^{2 / 2}$	${ }^{235}$						
* 58-71 Lanthanum series $+90-103$ Actinium series $\mathbf{a}=$ relative atomic mass $\quad \begin{aligned} & \text { (approx) } \\ & \mathbf{x} \\ & \text { atomic symbol }\end{aligned}$ b = atomic number			Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
			Th	Pa	${ }_{\text {Unemi }}^{238}$	${ }_{\text {a }}^{\text {and }}$	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

