

Centre Number					
	Can	didat	e Nu	mber	
	Can	didat	e Nu	mber	

General Certificate of Secondary Education 2019

GCSE Chemistry

Unit 1

Foundation Tier

[GCM11]

TUESDAY 28 MAY, AFTERNOON

GCM11

TIME

1 hour.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number in the spaces provided at the top of this page.

You must answer the questions in the spaces provided.

Do not write outside the boxed area on each page or on blank pages.

Complete in black ink only. Do not write with a gel pen.

Answer **all five** questions.

INFORMATION FOR CANDIDATES

The total mark for this paper is 60.

Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question.

Quality of written communication will be assessed in Question 5(a).

A Data Leaflet, which includes a Periodic Table of the Elements, is included in this question paper.

(i)	What is mea	nt by the term eleme	nt?
(ii)	What is mea	nt by the term atomic	number?
		dance of its isotopes	
		Isotope	Percentage abundance
		³² S	95.02
		³³ S	0.76
		³⁴ S	4.22
	Calculate the Show your w	orking out.	s for the sample of sulfur. e atomic mass =

pl. corning

Powering

Rewarding g Learning

Rewarding

g Learning

G S

g Learning
Rewarding
g Learning
g Learning
Rewarding

Rewarding g Learning Rewarding DEJ g Learning @ S Hewardin, G S Rewardin, Pewarding g Learning) G. Hewarding DED g Learning Rewarding DED g Learning Œ. Rewarding g Learning

Rewarding g Learning

Rewarding

g Learning

Rewarding

g Learning

G:

(c) Complete the table below.

Atom/ion	Number of protons	Number of neutrons	Number of electrons
³² S			
³⁴ S ² -			

[2]

[Turn over

lithiu	ım	beryllium	boron	carbon	nitrogen	oxygen	fluorine	neon
- Inci inc		Doryman	501011	Carbon	marogon	<u> </u>	паотто	11001
(a) Li	thiu	m burns in ai	ir to form li	thium oxid	e.			
(i)		/rite a baland :hium burns i		l equation	for the reac	ction which	occurs wh	en
	_							
(ii	a	escribe, in w toms react w ne ions forme	ith oxygen					
	_							
	_							
	_							
	_							
	_							
	_							
	_							
	_							
	_							

g Learning

Rewarding

g Learning

g Learning

g Learning

g Learning

Rewarding

g Learning

g Learning

g Learning

g Learning

Rewarding g Learning

Rewarding
Deligible
Geographic
Reparable
Reparable

p learning

Reveating

Partial R

Revarding
Description
Provided Provided

Rewarding g Learning

Rewarding

10 g Learning

Rewarding

g Learning

Rewarding

g Learning

(b)	Car	bon reacts with oxygen to form carbon dioxide.
	(i)	Write a balanced symbol equation for this reaction.
	(ii)	The dot and cross diagram for the bonding in carbon dioxide is shown below. Label one lone pair of electrons in the diagram.
		Ö×C×O.
(c)	The	e diagram below shows the bonding in lithium metal.
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
		+ + + + + + + + + + + + + + + + + + +
	Wh	at labels should be placed at A and B?

Rewarding L

Rewarding L

Rewarding L

Rewarding L

Rewarding L

Rewarding L

DED Learning

Learning

Rewarding L

Rewarding L

Rewarding L.

Learning

GE Rewarding L

Rewarding L

Learning Learning Learning L

Rewarding L

Rewarding L.

Learning

Rewarding L.

E

11828

[Turn over

(a)	(i)	What is potable water?
(,	(-)	
	(ii)	Why is chlorine used in water treatment?
	(iii)	Describe the test for chlorine gas.
	(iv)	Why is aluminium sulfate used in water treatment?
(b)	The	following method may be used to prepare hydrated aluminium sulfate.
	•	Measure out 25 cm ³ of dilute sulfuric acid into a beaker Warm the acid and add spatula measures of aluminium oxide until it is in excess
	•	Remove the excess aluminium oxide by filtration Slowly evaporate the aluminium sulfate solution
	(i)	What piece of apparatus is used to measure out 25 cm ³ of dilute sulfuric acid?

g Learning

Rewarding

g Learning

g Learning

g Learning

g Learning

Rewarding

g Learning

g Learning

g Learning

g Learning

Rewarding g Learning

DED IN LEASE OF THE PARTY OF TH Remode 9E)
g Learning Rewarding g Learning Rewarding Rewarding g Learning Rewarding g Learning Rewardin Hewardin, Rewardin.

Revarding
Description
Provided Provided

Rewarding g Learning

Rewarding

10 g Learning

Rewarding

g Learning

Rewarding

g Learning

(ii) Draw a labelled diagram of the assembled apparatus used for the filtration step.

[3]

(iii) Complete the balanced symbol equation for the reaction by adding the correct state symbols.

$$Al_2O_3($$
) + $3H_2SO_4(aq) \rightarrow Al_2(SO_4)_3($) + $3H_2O($) [1]

[Turn over

(c)	In an experiment, 12.60 g of hydrated aluminium sulfate crystals $Al_2(SO_4)_3$.x H_2O , were heated to constant mass. The anhydrous sulfate formed had a mass of 6.84 g.				
	(i)	Calculate the mass of water removed on heating to constant mass.			

mass of water = _____ g [1]

96

DE Alexania

2

20

PE

PED a Learning

Rewarding g Learning

(ii) Calculate the number of moles of water removed on heating to constant mass.

moles of water = _____ [1]

(iii) Draw a labelled diagram of the assembled apparatus used to heat the hydrated aluminium sulfate crystals to constant mass.	
	[2]
	<u>.</u> —j
(iv) Hydrated aluminium sulfate has the formula Al ₂ (SO ₄) ₃ .16H ₂ O. Calculate the relative formula mass (M _r) of hydrated aluminium sulfate.	ne
relative formula mass (M _r) =	[1]
[Turn	over
	hydrated aluminium sulfate crystals to constant mass. (iv) Hydrated aluminium sulfate has the formula $Al_2(SO_4)_3$.16H ₂ O. Calculate the relative formula mass (M_r) of hydrated aluminium sulfate. $relative formula mass (M_r) = \underline{\qquad}$ $relative formula mass (M_r) = \underline{\qquad}$

G = Learning

GE Rewarding L

DED Learning

Learning GE

Rewarding L

E

4	When experimenting with manganese(IV) oxide and compounds of the elements
	yttrium and indium, scientists accidentally discovered a new blue pigment. The new
	blue colour was named 'YInMn blue' after the elements it contained. It is being used
	as a new colour for crayons.

(a)	compounds.	
		[1]

(b) Complete the table below to give the colour of some substances.

Substance	Colour
copper(II) oxide powder	
copper(II) nitrate solution	
calcium chloride solution	

[3]

g Learning

Rewarding

g Learning

Rewarding

g Learning

Rewarding g Learning

20

20

Rewarding

P

Hewardin,

20

93

DED to Learning

93

P

Hewardin, g Learning

Rewarding g Learning

Rewarding

10 July 1 Ju

g Learning

(c) A student used chromatography to analyse a coloured pigment. The student set up the apparatus as shown in the diagram below. A is a coloured pigment and B, C and D are spots of pure dyes.

The student made an error in setting up the experiment. Identify the error and state the effect it would have.

Error			

Effect _	
	[2

[Turn over

(d) A different student set up the same experiment correctly and obtained the results shown in the chromatogram below.

(i) What do the results tell you about the composition of the coloured pigment A?

[1]

g Learning

GG

Rewardin

)

g Learning

)

93

96)

newardin.

93

93

20

93

P

DED ...

g Learning

Rewarding g Learning

moved by spot moved by solve for spot C	ent front	·		[3
for spot C		·		[3
	D) is least	·		[3
ure dye (B, C or	D) is least	·		[3
ure dye (B, C or	D) is least	·		[3
ure dye (B, C or	D) is least	soluble in the solv		
		Soluble III tile Solv	ent: Explain yo	, ui
				[2

Rewarding L

DED Learning

Learning

Rewarding L

Rewarding L.

Learning

GE Rewarding L

Rewarding L

Rewarding L

E

11828

[Turn over

5 (a	An investigation was carried out into the displacement reactions of the Bromine was added to a test tube containing sodium iodide solution separate test tube chlorine was added to sodium bromide solution. A occurred in both test tubes.	and in a
	State and explain what the student found out. In your answer you shoulde:	ould
	 word equations for the chemical reactions an order of reactivity, from most reactive to least reactive, of the shown by these reactions an explanation of the order of reactivity of the halogens in terms electronic configuration. 	
	n this question you will be assessed on your written communic ncluding the use of specialist scientific terms.	ation skills
		[6]
11828		_

pl. corning

Powering

Rewarding g Learning

Rewarding

Description

g Learning

g Learning
Rewarding
g Learning
g Learning
Rewarding

Rewarding g Learning Rewarding DEJ g Learning @ Sewardin Hewardin, G S Rewardin, Pewarding g Learning G. Hewarding DED g Learning Rewarding DED g Learning G.

Rewarding

g Learning

Rewarding

Rewarding g Learning

Rewarding g Learning

Rewarding g Learning

G:

(b)	com	ne analytical tests were carried out to identify the ions present in several pounds. Write the name of the anion or cation present based on the results be analytical tests given below.
	(i)	A white precipitate is produced on adding a few drops of barium chloride solution to a salt solution.
		[1]
	(ii)	On adding dilute nitric acid to the solid salt, a gas is produced which changes colourless limewater to milky.
		[1]
	(iii)	A flame test was carried out on a solid salt and a lilac flame was observed.
		[1]

THIS IS THE END OF THE QUESTION PAPER

DO NOT WRITE ON THIS PAGE

For Examiner's use only									
Question Number	Marks								
1									
2									
3									
4									
5									

g Learning

Rewardin,

g Learning

)

g Learning

20

20

93

PE

)

g Learning

9 Learning

93

DED IN LOCATION

DE P

P

g Learning

g Learning

De learning

Total Marks

Examiner Number

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright holders may have been unsuccessful and CCEA will be happy to rectify any omissions of acknowledgement in future if notified.

SYMBOLS OF SELECTED IONS Positive ions Negat

Negative ions

Name	Symbol				
Ammonium	NH ₄ ⁺				
Chromium(III)	Cr ³⁺				
Copper(II)	Cu ²⁺				
Iron(II)	Fe ²⁺				
lron(III)	Fe ³⁺				
Lead(II)	Pb ²⁺				
Silver	Ag⁺				
Zinc	Zn ²⁺				

Name	Symbol
Butanoate	C ₃ H ₇ COO ⁻
Carbonate	CO ₃ ²⁻
Dichromate	Cr ₂ O ₇ ²⁻
Ethanoate	CH₃COO⁻
Hydrogencarbonate	HCO₃
Hydroxide	OH⁻
Methanoate	HCOO⁻
Nitrate	NO ₃
Propanoate	C ₂ H ₅ COO ⁻
Sulfate	SO ₄ ²⁻
Sulfite	SO ₃ ²⁻

SOLUBILITY IN COLD WATER OF COMMON SALTS, HYDROXIDES AND OXIDES

Soluble
All sodium, potassium and ammonium salts
All nitrates
Most chlorides, bromides and iodides
EXCEPT silver and lead chlorides, bromides and iodides
Most sulfates EXCEPT lead and barium sulfates
Calcium sulfate is slightly soluble

Insoluble
Most carbonates
EXCEPT sodium, potassium and ammonium carbonates
Most hydroxides
EXCEPT sodium, potassium and ammonium hydroxides
Most oxides
EXCEPT sodium, potassium and calcium oxides which react with water

© CCEA 2017

COUNCIL FOR THE CURRICULUM, EXAMINATIONS AND ASSESSMENT 29 Clarendon Road, Clarendon Dock, Belfast BT1 3BG
Tel: +44 (0)28 9026 1200 Fax: +44 (0)28 9026 1234
Email: info@ccea.org.uk Web: www.ccea.org.uk

Data Leaflet Including the Periodic Table of the Elements

For the use of candidates taking Science: Chemistry, Science: Double Award or Science: Single Award

Copies must be free from notes or additions of any kind. No other type of data booklet or information sheet is authorised for use in the examinations

gcse examinations chemistry

THE PERIODIC TABLE OF ELEMENTS Group

									Jup								
1	2						1 H Hydrogen					3	4	5	6	7	4 He Helium
7	9 Be Beryllium							J				B Boron	12 Carbon	14 N Nitrogen	16 Oxygen	19 Fluorine	Ne Neon
23 Na Sodium	24 Mg Magnesium 12											27 Aluminium 13	28 Si Silicon	31 Phosphorus 15	32 S Sulfur	35.5 Chlorine 17	40 Ar Argon 18
39 K Potassium 19	40 Ca Calcium 20	45 Sc Scandium 21	48 Titanium 22	Vanadium 23	52 Cr Chromium 24	Manganese 25	56 Fe 1ron 26	Co Cobalt 27	59 Ni Nickel 28	Cu Copper 29	65 Zn 30 Zinc	70 Ga Gallium 31	73 Ge Germanium 32	75 As Arsenic 33	79 Se Selenium 34	Bromine 35	Kr Krypton 36
Rb Rubidium	Sr Strontium 38	89 Y Yttrium 39	91 Zr Zirconium 40	93 Nb Niobium 41	96 Mo Molybdenum 42	98 TC Technetium 43	101 Ru Ruthenium 44	Rhodium	106 Pd Palladium 46	108 Ag Silver	112 Cd Cadmium 48	115 In Indium 49	119 Sn 50	122 Sb Antimony 51	128 Te Tellurium 52	127 Iodine 53	131 Xe Xenon 54
CS Caesium	137 Ba	139 La *	178 Hafnium 72	¹⁸¹ Ta	184 W Tungsten	186 Re	190 OS Osmium 76	192	195 Pt Platinum	197 Au Gold 79	201 Hg	204 TI Thallium	207 Pb Lead	209 Bi Bismuth	Po Polonium 84		Rn Radon 86
Francium	Radium	227 Actinium	261 Rf Rutherfordium 104	262 Db	266 Sg Seaborgium	264 Bh	277 HS Hassium 108	268 Mt Meitnerium 109	271 DS Darmstadtium	²⁷² Rg	²⁸⁵ Cn		•		•		

* 58 – 71 Lanthanum series † 90 – 103 Actinium series

a = relative atomic mass (approx) **x** = atomic symbol **b** = atomic number

14	0	141	144	145	150	152	157	159	162	165	167	169	173	175
	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
58	Cerium	Praseodymium 59	Neodymium 60	Promethium 61		Europium 63	Gadolinium 64		Dysprosium 66	Holmium 67	Erbium 68	Thulium 69	Ytterbium 70	Lutetium 71
23	32	231	238	237	242	243	247	245	251	254	253	256	254	257
•	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
T	horium	Protactinium		Neptunium	Plutonium	Americium	Curium	Berkelium	Californium	Einsteinium	Fermium	Mendelevium		Lawrencium
90)	91	92	93	94	95	96	97	98	99	100	101	102	103